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ABSTRACT
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sought to explain variations in technology adoption by heterogeneity in profitability, costs of 
adoption, or other factors. Less is known about how adoption is affected by bias in the perceived 
skill to implement the technology.  We develop a Bayesian framework in which the use of the 
technology depends on perceived skill, while the outcomes from using it depend on actual skill. 
We study the determinants of adoption in the case of implantable cardiac defibrillators (ICDs) for 
which we document large differences across hospitals in the rate of adoption between 2002-2006, 
and a strong reversal from 2006-2013. We find that perception bias explains two-thirds of the 
cross-hospital variation in ICD use. A dynamic version of the model with learning about bias 
predicts accurately the subsequent decline in ICD use between 2006-2013. These results suggest 
an important role for misperception in explaining the wide variation in the adoption of new 
technologies.
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1. Introduction 

 

Technology is the key determinant of long-run living standards, and a better understanding of 

the determinants of technology adoption is central to improving productivity (e.g., Comin and 

Hobijn, 2004, 2009, 2010; Skinner and Staiger, 2015, Comin and Mestieri, 2018). Concerns about 

lagging adoption rates that slow productivity growth have largely centered around the role of 

heterogeneity across potential adopters in the value of the new technologies (Griliches, 1957; 

Comin and Hobijn, 2007; Caselli and Coleman, 2006; Chandra and Staiger, 2007; Jovanovic and 

Nyarko, 1996; Suri, 2011), and in the cost of implementing, using or managing the new 

technologies (Caselli, 2004; Skinner and Staiger, 2007, Foster and Rosenzweig, 1995; Conley and 

Udry, 2010; Duflo et al., 2011; Rogers, 2010).  

In contrast, much less attention has been devoted to perception biases, or gaps between 

beliefs and reality in the value or the costs of new technologies, as potential sources of the large 

variation observed in technology adoption patterns. Overconfidence (and underconfidence) may 

have important effects on adoption patterns as ultimately, it is adopters’ expectations that 

determine whether to adopt or not.1 Even in the case where all potential adopters have identical 

abilities, access to technology, and face identical prices, differences across adopters in their 

perceptions about these variables will generate variation in the timing or intensity of adoption. 

Variation in adoption due to misperceptions leads to allocative inefficiency in the use of the 

technology; the pervasiveness of misperceptions therefore has important implications for welfare 

and productivity. 

The neglect of perception biases in the context of technology adoption may be due to the 

inherent difficulty of separately identifying perceived and actual net values of a new technology 

for adopters. The main goal of this paper is to develop a framework that uses variation in 

technology adoption and outcomes conditional on adoption to disentangle two structural 

parameters: the true value of the technology for the adopter, and the adopter’s misperception of its 

true value. We present and apply the framework in the context of a specific technology, 

implantable cardioverter defibrillators (ICDs).  These are expensive medical devices whose 

                                                           
1 Two related literatures are (a) CEO overconfidence in supporting innovation (Galasso and Simcoe, 2011), and (b) 

an agent’s inability to implement the optimal adoption decision due to time-inconsistency and lack of access to 

commitment devices (Duflo, Kremer, and Robinson, 2008). Time-inconsistence is unlikely to be an issue in our 

context as doctors do not bear the economic cost of adopting the technology. 
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purpose for patients with congestive heart failure (CHF) is to reduces the risk of sudden cardiac 

arrest, and thus extend survival. We use a 100% fee-for-service cohort of Medicare enrollees aged 

65 and over with CHF for each year from 2002-2013 to document the following: (1) a rapid 

average diffusion between 2002 and 2006 in the use of ICDs for patients with CHF, but with wide 

variation in growth across regions; and (2) a decline in the average ICD rate after 2006 with regions 

with higher initial (2006) ICD use rates more likely to scale back on their use.    

We then match to the Medicare data a comprehensive national 2006-13 ICD registry with 

detailed clinical information about every patient receiving an ICD.  We used the combined data to 

find that (3) hospitals with the highest rate of ICD use exhibited a larger fraction of patients outside 

clinical guidelines; (4) there was wide variability in ICD mortality rates across hospitals; (5) 

hospitals with larger ICDs use rate exhibited higher conditional (risk-adjusted) mortality; and (6) 

average mortality rates showed only a modest decline between 2006-13.  

In our theoretical framework, Bayesian physicians decide whether patients should receive 

an ICD implant based on their imperfect assessment of both the patient’s type and their own skill 

in implanting ICDs. A key prediction of the model is that the ICD use rate depends on the perceived 

level of physician skill, while the outcome from the implant, which in our case is the conditional 

mortality rate, depends on the true skill of the physician. These predictions provide an empirical 

strategy to identify the physician’s true and perceived skill from data on ICD use and conditional 

mortality; a hospital adopting ICDs rapidly despite worse patient outcomes is consistent with the 

hospital’s physicians being overconfident about their skill. (While there may be more than one 

ICD-capable physician in a given hospital, we are limited empirically to hospital-level measures 

of utilization and outcomes.)  

We implement this empirical strategy in our data and identify, for each hospital and year, 

the level of true and perceived skill and consequently the gap between the two which we label 

physician bias. We find that most (but not all) physicians are overconfident, in the sense that their 

perceived skill exceeds their actual skill. The structural model, in addition to helping to identify 

these parameters, allows for counterfactual analyses. These imply that variation in overconfidence 

explains two-thirds of hospital variation in the ICD use rate. In turn, misperception leads to less 

appropriate patients receiving ICDs, which attenuates the net benefits of the new technology by 

40 percent. 
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We extend the model to explore the nature of physician biases and the drivers of its evolution. 

We consider three possible sources of bias: (i) an individual doctor’s overconfidence, (ii) a 

common bias across all doctors in the perceived net value of ICD use in the relevant population, 

and (iii) a fixed private financial benefit for the doctor to implant ICDs (sometimes referred to as 

supplier-induced demand). We allow doctors to learn individually about their true skill in 

implanting ICDs, and collectively about the population-wide net value of ICDs. The model yields 

an intuitive framework to identify these three possible sources of physician bias. For ICDs during 

this period, private benefits did not change over time and so introduce a time-invariant hospital-

specific intercept. Learning about common bias affects all hospitals equally and introduces a time-

specific intercept. In contrast, learning about true skill introduces mean reversion in physician bias. 

That is, overconfidence attenuates over time leading to a reduction in the average level and 

dispersion of ICD use across hospitals. 

The estimates show that there is significant learning about pure skill, with an average half-life 

in hospital’s misperceptions about their true skill of about 3 years. Estimates suggest that about 

one-third of the average initial physician bias is due to the doctor’s private benefit (e.g., supplier-

induced demand) while the remaining two-thirds is due to physician’s being initially overconfident 

about their skill in performing ICDs. Using the estimates of the learning model over the cross-

section of hospitals during the first year, we conduct an out-of-sample forecasting exercise that 

provides the levels of perceived skill in each hospital in 2013 predicted by the learning model. 

This exercise shows that learning predicts a reduction in the average ICD use rate across hospitals 

equal to two-thirds of the observed decline in the data. Furthermore, doctors learning about true 

skill more than accounts for the reduction in cross-hospital variance in ICD use observed in the 

data. Across hospitals, the out-of-sample model forecast of the change in ICD use is strongly 

correlated (0.68) with the actual (2006-2013) change. 

Our work builds on earlier papers by Chandra and Staiger (2010, 2020) that separately identify 

procedure skill from bias in determining the treatment of heart attacks, and by Abaluck et al. (2016) 

and Mullainathan and Obermeyer (2022) that use similar methods to study inefficiency in testing 

in the emergency room. Like our paper, these papers use both variation in patient outcomes and 

rates of procedure/testing use across hospitals to separately identify skill from bias. Our paper 

differs from these earlier papers in three regards. First, our study focuses on misperception in the 

adoption and diffusion of a new technology – or more specifically, the use of an existing 
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technology – ICDs – for an entirely new population of people with congestive heart failure that 

was only approved in the mid-2000s.   Second, whereas earlier papers used a more reduced-form 

methodology, we develop a structural empirical model related to Olley and Pakes (1996) who 

identify firm-level total factor productivity (TFP) in the presence of endogenous inputs choice and 

selection by inferring firm’s expected TFP from the firm’s investment behavior. Though in a very 

different setting, our framework shares with Olley and Pakes the insight that agents’ expectations 

about key unobserved parameters (skill in our case, TFP in theirs) can be identified by using the 

model structure and observed choices (ICD use in our case, investment in theirs). Finally, our 

approach provides an empirical framework for the analysis of data generated by clinical registries 

where the sample is typically limited to only those who received the treatment.  

Other papers have considered instead variation across physicians in diagnostic expertise (the 

ability to choose the right patients for treatment). Currie and McLeod (2017) study the role of 

diagnostic expertise in the use of Cesarean procedures (C-sections), where the ability to diagnose 

appropriate patients varies across physicians; patients of physicians with better diagnostic abilities 

experience better outcomes. Similarly, Chan et al. (2022) consider diagnostic expertise in the 

context of radiologists diagnosing pneumonia. In contrast, we model heterogeneity across doctors 

in their skill at treating all patients and their biases about their perceived skill. All these papers 

find evidence of productive inefficiency in diagnosis that is consistent with (but not unique to) our 

model of misperceptions in treatment choice, but none consider bias in the perception of procedural 

skill (e.g., the ability to perform the procedure, as in Birkmeyer et al., 2013) and the associated 

misallocation of patients to procedures, nor do they consider the potential for dynamic learning.  

More generally, the literature has studied dynamics in the use of medical procedures and 

outcomes as dependent on two distinct mechanisms. One strand has emphasized the role of clinical 

learning-by-doing (e.g., Jovanovic and Nyarko, 1995; Gong, 2017). The other has focused on the 

general perception about the net value of new technologies or procedures, documenting both cases 

where the general perception was initially too optimistic (Jupiter and Burke, 2013), and too 

pessimistic (Currie, MacLeod and Van Parys, 2015; Wu and David, 2022) relative to its long-run 

level. Our framework allows both for variation over time in true skill and in the economy-wide 

perception of the net value of the technology. However, we do not find that they played a 

significant role in the evolution of ICD use. Instead, the strong mean reversion in hospital-level 

overconfidence and the simultaneous declines in cross-hospital variation in ICD use points to the 
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importance of physicians learning about bias and overconfidence and revising their practice 

accordingly.  

Finally, our framework and findings are related to various strands of the broader literature on 

overconfidence. Overconfidence has received considerable attention in psychology (e.g., Moore 

and Healy, 2008), finance (Barber and Odean, 2001; Glaser and Weber, 2007; O’Neill, Pouder; 

and Buchholtz, 1998), CEO decisions regarding the exercising of stock options,  firm investments, 

and innovation (Galasso and Simcoe, 2011; Malmendier and Tate, 2015), market entry in industrial 

organization (Camerer and Lovallo, 1999), and in health care regarding diagnostic error or beliefs 

not supported by clinical evidence (Berner and Graber, 2008; Cutler et al. 2019). To our 

knowledge, perception bias has not been explored in the context of technology adoption and 

diffusion. 

The rest of the paper is organized as follows. Section 2 describes how we have assembled our 

data set and documents the key facts about the evolution of the use of ICDs and the outcomes after 

an ICD implant across US hospitals. Section 3 presents our model. Section 4 contains our analysis, 

while Section 5 concludes. 

 

2. Implantable Cardioverter Defibrillators (ICDs) 

Congestive heart failure (CHF) is a common illness among the elderly with an estimated 

prevalence of 6.2 million people in the U.S (Virani, 2020).  It is very different from acute 

myocardial infarction (heart attack). While heart attacks are sudden medical emergencies treated 

(often successfully) with a variety of medical interventions, CHF is a chronic illness whose 

progression can only be slowed by appropriate medical management.  The severity (and hence 

progression) of CHF has been categorized by New York Heart Association to range from Class I 

(the least severe) through to Class IV (the most severe), at which point the annual mortality rate is 

as high as 20-50 percent (Ahmed et al., 2006). 

An important risk facing CHF patients is a sudden cardiac arrest, which occurs when the 

heart suddenly stops functioning, typically because of arrhythmia, or irregular heart rhythm.  This 

causes rapid and unsynchronized heartbeat, leading to little or no blood being pumped from the 

heart, and absence of a heartbeat (van Reys, 2014). Implantable cardioverter defibrillators (ICDs) 

are small electronic devices that are surgically implanted in the pectoral region of the chest and 

connected with wire “leads” to key locations of the heart.  These leads serve two functions.  The 
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first is to monitor the rhythm and detect tachycardia (irregular or weak heart beats), and the second 

is, when necessary, to shock the heart with a strong electrical current, effectively “rebooting” the 

conduction system. (TV series and movies often show physicians using paddles to administer 

electrical shocks;2 ICDs are internal automated versions.) Over time ICDs have become more 

effective and entailed fewer complications as the size of the ICD shrunk, and the sophistication of 

the computer programs designed to detect arrhythmias improved.  

Initially, ICDs were developed in the 1980s and 1990s for people who had already 

experienced and survived a cardiac arrest but were at risk of experiencing another one. As ICDs 

became more compact and reliable, attention turned to the larger group of people with congestive 

heart failure (CHF) also at risk of cardiac arrest but who had not yet experienced the life-

threatening event; for these patients the ICD is deemed “preventive.” A large 2005 randomized 

trial, SCD-HeFT, found substantial mortality benefits of up to 7 percentage point increases in 

survival 5 years after the procedure (Bardy et al., 2005). Soon after the SCD-HeFT trial, ICDs 

were allowed by Medicare in the U.S. to be used as a preventive device for patients with weakened 

hearts (congestive heart failure, or CHF) who had not yet experienced a cardiac arrest, thus 

expanding dramatically the population of those eligible for ICDs.  In this case,  “adoption” is the 

expanded use of an existing technology for an entirely new population, rather than a brand-new 

technology. We use the Medicare claims data linked to a Centers for Medicare and Medicaid 

Services (CMS) clinical registry of every ICD implanted during 2006-13 with detailed information 

on key clinical variables that characterize both appropriateness for treatment, and subsequent risk 

of mortality.  

The SCD-HeFT trial included only the intermediate Class II and Class III CHF patients 

with low “ejection fractions” or the heart’s ability to pump blood to the rest of the body.3 The 

reason why the trial was limited to only these two groups was the consensus that for Class I (the 

least serious) CHF patients, the risks outweighed potential benefits given the rarity of sudden 

cardiac arrest in this group versus the risks of broken leads or infections, while for the more severe 

Class IV patients, the heart is so weakened that it can no longer sustain pumping, no matter how 

                                                           
2 An example from CSI: New York:  https://www.youtube.com/watch?v=_lJCDrYxK9A  
3 As well, the ejection fraction should be 35% or less in patients with Class II or III Heart Failure.  Despite the rarity 

of older patients in the randomized trials, there are no guidelines that recommend against the use of ICDs because of 

age. 

 

https://www.youtube.com/watch?v=_lJCDrYxK9A
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many times it reboots. For Class IV patients, ICDs can lead to a series of successive and painful 

shocks, sometimes delaying an otherwise peaceful demise as the ICD continues to go off until the 

batteries are drained (Friedrich and Bohm, 2007).  Despite these guidelines, a small fraction of 

ICD procedures were done for those with either Class I or Class IV patients, or for those who had 

been diagnosed with CHF only recently, and thus have not yet tried medical management.  In our 

analysis, we adjust for these different characteristics, but do not address the more complex problem 

of whether higher-quality physicians should be more or less likely to follow guidelines.4  

Finally, to understand the growth and subsequent reduction in the use of ICDs, it is 

important to rule out the development of a new technology that might have led to a shift away 

from ICDs.  While during the 2000s, there was increased adherence to guideline-directed drug 

prescriptions (e.g., Roth et al., 2016), there was no innovation or breakthrough developed to reduce 

mortality among CHF patients that would have caused physicians to replace ICDs during the 

period of analysis (Kolata, 2017).   

2.1 Measuring ICD use in the Medicare Population 

To study the evolution of ICD use, we use a 100% fee-for-service cohort of Medicare 

enrollees age 65 and over diagnosed with CHF (based on Hierarchical Condition Category) for 

each year from 2002 to 2013. These are created both to illustrate the wide differences in the 

diffusion of ICDs for CHF patients, and to derive regional utilization rates that can then be assigned 

to hospitals (as described below). We include only new ICD implantations during 2002-13 and 

thus exclude replacement ICDs because of failed batteries or other reasons.5 For these cohorts of 

CHF patients, we estimate rates of ICD use at the hospital referral region (HRR) level, of which 

there are 306 in the U.S.6 These utilization measures are based on the residence of the patient; if a 

resident of the Memphis HRR received their ICD in Atlanta, the ICD would be assigned to the 

Memphis HRR rather than to Atlanta.  

                                                           
4 In the context of our model below, it is possible that higher-skill physicians could still gain good outcomes even 

for out-of-guideline patients, although the evidence for this is weak (e.g., Abaluck et al., 2020).  During the period 

of analysis, CMS cracked down on hospitals billing for out-of-guideline patients.   
5 We begin the analysis using the claims data in 2002, when the sample of Part B claims data relevant for analysis is 

20% of all fee-for-service enrollees; the sample rises to 40% in 2003-05 and becomes 100% thereafter. We use CPT 

33249 rather than in-hospital DRG codes to measure incidence.  
6  HRRs were first developed by the Dartmouth Atlas Project in the 1990s to create regions based on the migration 

patterns of individuals to their hospitals. Thus, HRR boundaries will often follow (e.g.) interstate highways and 

cross state lines.  Each HRR includes a major tertiary hospital that performs neurosurgery and cardiac surgery. We 

use HRRs rather than the smaller hospital service areas (HSAs) for better sample precision.  
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In addition to restricting the sample to CHF patients, we also include a variety of other risk 

adjusters to control for more severe CHF or other comorbidities that could affect the likelihood of 

ICD placement.  For this reason (and for consistency with the theoretical model), we used a year-

specific probit risk-adjustment model with HRR-level fixed effects.  We include as risk-adjusters 

individual five-year age brackets (with a category of 85+ for older patients), sex, race/ethnicity 

(black, white, and other), and dual eligibility with Medicaid (an individual indicator of serious 

illness, poverty, or both). At the ZIP code level we included poverty rates and income (from the 

2010 Census) and at the county level smoking, obesity, and diabetes based on Behavioral Risk 

Factor Surveillance System (BRFSS) data; these latter health behavior measures are highly 

predictive of regional mortality rates (Wennberg et al., 2014).  Risk-adjusted population-based 

rates of ICD use for each HRR for each year were calculated as the predicted ICD rate from this 

probit for an average CHF patient.7  

The regression estimates are presented in Appendix Table B.1 for three selected years 

(2002, 2006, and 2013).  In all years, the regressions indicate that the county health indicators are 

not strongly predictive of receiving an ICD.8 While individual characteristics such as age are 

important predictors at the individual level, average age across HRRs conditional on Medicare 

enrollment varies little so that the correlation between raw and fully-adjusted ICD rates at the HRR 

level is 0.96. Finally, the regression coefficients suggest a narrowing in racial disparities for the 

use of ICDs; by 2013 there are no meaningful differences in risk-adjusted ICD use across the three 

racial/ethnic groups.  

In Figure 1, we present risk-adjusted rates of newly implanted ICDs per 100 CHF patients 

by HRR between 2002-13 for the U.S., and for selected regions, with an emphasis on the regions 

adopting most rapidly. At the national level (shown as a dashed line in Figure 1), ICD use among 

this sample nearly doubled, from 0.8 percent in 2003 to 1.4 percent in 2005, before a gradual 

decline to 1.0 percent in 2013.   

                                                           
7 The “average” CHF patient is defined as a patient with average mortality risk (rather than a patient with average 

characteristics) to ensure in this nonlinear model that the average predicted rate in a given year was equal to the 

actual average. See Appendix A for more details.   
8 Recall that the sample is for people who have already been diagnosed with CHF, while the rates of health 

behaviors are for the entire populations.  Similar results were found when we included the entire sample of Medicare 

enrollees, including (in addition to the variables above) a dummy variable for diagnosed CHF.  

 



9 

 

As suggested by Figure 1, there was widespread variability in rates of diffusion.  Two of 

the most rapid adopters were Terre Haute IN, which rose 4-fold in two years, from 0.8 percent in 

2003 to 3.3 percent in 2005, and Wilmington NC, which appears to have risen by a similar amount 

(although the 2002 rate is suppressed under CMS rules because fewer than 11 ICDs were reported 

in the sample). By contrast, many larger metropolitan regions exhibited much smaller increases; 

Los Angeles and Providence RI, for example, remained consistently below the national average 

(Figure 1). While both Terre Haute and Wilmington also experienced a decline in later years, other 

regions such as Harlingen TX exhibited steady growth during the entire period.  

Figure 2 provides a map for the entire U.S. of 2006 ICD utilization rates by HRR.  This 

figure confirms the geographic disparity in the use of ICDs across the entire U.S., with a 10-fold 

difference between Olympia WA (0.28 percent of CHF patients) and Terre Haute (2.9 percent in 

2006).9 Furthermore, there is considerable variation even within states.  Figure 3 plots the change 

in hospital-level ICD use rate between 2002 and 2005 (x-axis), and between 2006 and 2013 (y-

axis). The population-weighted cross-hospital correlation between initial and subsequent change 

in ICD rates is negative (-.38, p < .001), showing that the hospitals that adopted ICDs more 

intensively also experienced the most subsequent rapid decline.   

One hypothesis for why ICD use declined gradually following an initially high rate (as we 

observe in Figures 1 and 3) is a “stock-flow” model; the stock or backlog of patients newly eligible 

for an ICD could have led to an uptick in utilization for 2006, followed by a dissipation in the 

backlog with subsequent utilization rates more closely matched the steady-state flow of newly 

eligible patients. As discussed in more detail below, the ICD registry data includes the duration of 

the CHF prior to the ICD, but there was no evidence of a diminishing backlog.10  

While population-based rates of ICD utilization are drawn from HRRs, we seek to estimate 

our model at the level of the hospital that performs the ICD.11 We do this by assigning to each 

                                                           
9 One might be concerned with small-sample bias in these relatively small HRRs, but the patterns show a strong 

temporal trend; high rates in 2006 are not an outlier relative to previous or subsequent years.  Instead, the large 

variation in smaller areas is most likely because just one or two physicians are the key decision-makers for ICD 

implantations.  
10 In 2006, 72 percent of those receiving an ICD had had CHF for at least 9 months; by 2013, the fraction of ICD 

recipients with long-term CHF had risen to 82 percent.   
11 Measures of ICD intensity in utilization requires both a numerator (the number of ICDs implanted in a given year) 

and a denominator (the number of potential patients). While regions are well suited to calculate both numerator and 

denominator (e.g., as done in the HRR-level analysis above), calculating the denominator of a given hospital, 

particularly in a city with multiple hospitals, is difficult.  
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patient their HRR-level utilization measure. For example, if a hospital in the Boston area draws 

from the Boston, Providence, and Portland ME HRRs for their ICD patients, the hospital-specific 

rate of ICD utilization will be a weighted average of those three HRR rates; this is shown in a 

schematic in Figure 4a.  

2.2. Variation in Health Outcome Following ICD Implantation 

In the study of technology diffusion, it is rare to measure accurately the performance of 

adopters after adopting the technology. When CMS approved the use of ICDs for preventive 

purposes, it was done with the understanding that hospitals would send detailed clinical 

information about the patient to CMS. We use this 100% registry, linked to the Medicare 

denominator file for people age 65+, during 2006-13, which allows us to calculate mortality rates 

based on Medicare denominator files available through 2015.  The registry includes detailed 

information on each patient that includes whether the ICD was for patients with CHF, their risk 

class (I through IV) as well as ejection fraction and many other clinically relevant factors such as 

ventricular tachycardia, family history of cardiac arrest and the length of time diagnosed with CHF; 

importantly we know the hospital performing the procedure.12 These data are far more detailed 

than what could ever be recovered from Medicare billing claims.  

We link the data to the Medicare denominator file to measure one-year and two-year 

mortality rates.  We view mortality as the apposite outcome because ICDs provide no other benefit 

to patients other than to “reboot” the heart in the case of sudden cardiac arrest.  To estimate 

mortality rates, we focus on a relatively homogenous group of CHF patients who have never 

previously had an ICD implanted. Ideally, we would like to measure true treatment effects; the 

benefit of an ICD relative to the status quo of medical management for CHF.  However, because 

registry data is lacking for patients not receiving an ICD, our estimates are specific to mortality 

rates only among those treated.13 As well, we focus solely on hospital-level measures of outcomes; 

we recognize that some hospitals may include more than one cardiologist or electrophysiologist 

                                                           
12 One complexity associated with identifying hospitals is that in some cases, the hospital was not identified; only 

the NPI for the provider who performed the procedure.  We are grateful to Andrea Austin for providing a crosswalk 

from ICD-capable providers to the hospital where they performed the plurality of procedures. 
13 The modeling in Section 3 and analysis in Section 3 derive predictions based on these estimates using the registry 

data, supplemented by treatment effects of ICDs estimated based on the SCD-HeFT randomized trial (Bardy et al., 

2005).   
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who performs the procedures but identifying pure physician effects from the hospital-level team 

that both implants and maintains the ICD is problematic.   

Table 1 provides summary statistics of the ICD sample (N = 238,059).  The average age 

among the Medicare enrollees (all of whom are 65+) is 74.9, and just 28 percent are female. We 

also include summary statistics for additional covariates from the registry, including the ejection 

fraction, prior cardiac arrest, family history, prior heart attack, and other variables. Hospital-level 

risk-adjusted mortality is modeled using the following hierarchical structure:  

𝑀𝑗𝑖𝑡 = 𝛹𝑖𝑡 + 𝑋𝑗𝑖𝑡𝛽 + 휁𝑗𝑖𝑡     (1)   

where  𝛹𝑖𝑡 = 𝐼𝐶𝐷_𝑟𝑎𝑡𝑒𝑖𝑡𝛤 + 𝜃𝑖 + 𝑣𝑖𝑡  (2)  

The first equation is at the patient level, where mortality (𝑀𝑗𝑖𝑡) for patient j treated at 

hospital i in year t is a binary variable that depends on characteristic of the patient (𝑋𝑗𝑖𝑡), and a 

hospital effect ( it ). At the hospital level, the hospital effect in turn depends on the hospital-level 

risk-adjusted utilization rate of ICDs in that year (ICD_rateit) plus a random hospital effect (θi) and 

a random hospital-year effect (νit). We allow the mortality hospital effect it to depend on the 

utilization rate of ICDs to estimate a reduced-form correlation between ICD aggressiveness and 

risk-adjusted mortality. As well, we are particularly interested in the variance of it  and its 

covariance with the hospital’s ICD utilization, which depends both on the predictable 

characteristics of the hospital, Var(𝐼𝐶𝐷_𝑟𝑎𝑡𝑒𝑖𝑡𝛤), and the  provider-specific error term Var(𝜃𝑖).  

Our preferred specification is a hierarchical random-effects model, which provides 

estimates of the key parameters (𝛤, 𝑉𝑎𝑟(𝜃𝑖)) and also estimates of the individual hospital effects, 

�̂�𝑖𝑡 = 𝐼𝐶𝐷_𝑟𝑎𝑡𝑒𝑖𝑡�̂� + 𝜃𝑖 + 𝑣𝑖𝑡, where we use best linear unbiased predictions for the hospital and 

hospital-year random effects (e.g., use Empirical Bayes to “shrink” the estimate of the provider 

residual towards the fitted value 𝐼𝐶𝐷_𝑟𝑎𝑡𝑒𝑖𝑡�̂� depending on the sample size of the provider). We 

focus on random-effects models, but in sensitivity analyses we also consider least-squares 

regressions and models with provider-level fixed effects. Because we wish to estimate the hospital-

specific effect on mortality of ICD relative to medical management, in some specifications we add 

hospital-level controls (to 𝑋𝑗𝑖𝑡) to proxy for quality of medical management such as patient volume 

and the use of guideline-consistent medical treatment for CHF patients. 
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The benefits inherent in ICD implantation arise only after several years (Bardy et al., 2005) 

so we estimate the conditional hospital effect ( it ) on both 1-year and 2-year mortality using the 

random-effects model (Equations 1 and 2). Figure 5 shows the distribution across hospitals in 

conditional 2-year mortality rates. The standard deviation of the 2-year conditional mortality rate 

across hospitals is 3.0 percentage points (relative to a mean of 22 percentage points), with mortality 

rates in high-mortality hospitals nearly twice as high as those in low-mortality ones.14 Similar 

variation is observed in 1-year conditional mortality rates, with a standard deviation of 2.2 

percentage points relative to a mean of 12 percent.  Finally, Figure 6 presents the evolution of 1-

year and 2-year mortality over time for the U.S., with both showing slight declines between 2006 

and 2013 of less than half a percentage point. Thus, in the early years when ICD use was higher 

there was also higher mortality rates among those patients receiving an ICD. 

2.3 The Association of ICD Diffusion with ICD Patient Characteristics 

 The types of patients being treated with ICDs in the top quartile of hospitals with the 

highest ICD utilization appear different from patients treated in the bottom quartile of hospitals 

with the lowest ICD utilization (Table 2). Relative to hospitals with low ICD utilization, patients 

treated in hospitals with high ICD utilization were more likely to be inappropriate for ICD based 

on guidelines, more likely to be at high ex-ante risk (>20%) of dying within 1 and 2 years, and 

more likely to have Class IV CHF severity (with all differences significant at the .001 level). Each 

measure is an indication that counsels against the use of ICDs, suggesting that hospitals with high 

utilization rates are drawing from a less appropriate distribution of patient characteristics.  

2.4 The Correlation Between ICD Diffusion and Mortality  

A key moment to understand the determinants of ICD use is the relationship between ICD 

adoption and conditional mortality. To this end, we combine the utilization data (Section 2.1) and 

the outcome estimates (Section 2.2) to compute the correlation between conditional (risk-adjusted) 

mortality and ICD utilization. Rather than report mortality rates at the hospital level we instead 

aggregate them back to the more precisely estimated HRR level as shown schematically in Figure 

4b.  

                                                           
14 Recall that these estimates are derived from the random-effects model and are therefore already shrunken towards 

the mean; a fixed-effects model would have exhibited even more variability. 
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Figure 7 shows a positive correlation between the average (2006-13) ICD utilization rate, 

and the fully risk-adjusted 2-year mortality at the HRR level.  The graph also identifies several 

regions of interest.  For example, some HRRs exhibit both low risk-adjusted ICD mortality rates 

and low use of ICDs (Minneapolis-St. Paul, Syracuse NY, Owensville KY) while others exhibit 

high rates of ICD use and high ICD mortality (e.g., Miami, Terra Haute IN, and Munster, IN).  

That Munster is an outlier may be explained in part by a cardiologist there who was later sued for 

malpractice (Creswell, 2015). 

Table 3 displays estimates of the hospital-level relationship between mortality and ICD 

utilization from OLS, random effect, and fixed-effect models, limited to just two-year mortality; 

full regression results (with one-year and two-year mortality) are reported in Appendix Table B.2. 

As shown in Table 3, there is a consistent positive association between hospital ICD utilization 

and risk-adjusted mortality rates, which is statistically significant in both the OLS and random-

effects model, suggesting in the reduced form that patients in regions with the most rapid diffusion 

experience worse outcomes. The point estimates are positive but smaller and less precise in the 

fixed-effect model – the association between ICD utilization and conditional mortality comes 

primarily from between-hospital rather than within-hospital variation.    

As sensitivity analysis, Table 3 also includes a regression specification including the log 

of annual volume for all ICD performed at the hospital for the over-65 population (including non-

CHF patients), to adjust for the conventional finding that higher-volume hospitals yield better 

outcomes (Freeman et al., 2010). The coefficients on these variables are as expected; an increase 

in log-volume of 1 is associated with a 1.4 percentage-point decline in 2-year mortality in the 

random-effects model (Column 4 of Table 2). We also include the fraction of ICD-appropriate 

patients receiving high-quality medical management, which is the alternative treatment for CHF 

patients not receiving an ICD.15  Including both the volume and medical management variables in 

the mortality regression leads to a larger positive coefficient for ICD use in the random-effects 

regression (Column 4 in Table 3).   

To sum up, we have established several empirical patterns in the ICD data: (a) rapid 

average diffusion between 2002 and 2006 in the use of ICDs for patients with congestive heart 

                                                           
15 The HRR level data, from Roth et al. (2016), measured the fraction of patients receiving guideline-directed 

medical treatments prior to their receiving an ICD.  
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failure, but with wide variation in growth across regions; (b) a reversion to the mean with regard 

to utilization, in the sense that regions with the most rapid growth in ICDs were most likely to 

scale back on their use; (c) hospitals with the highest ICD use were treating less appropriate 

patients; (d) there was wide variability in ICD mortality rates across hospitals; (e) between 2006 

and 2013 the average mortality rate one- and two-year after an ICD implant has declined; and (f) 

a positive correlation between ICD utilization and conditional mortality across hospitals.  We turn 

next to developing a model that can explain these empirical patterns.   

 

3. The Model  

The model builds on an optimizing Bayesian framework where both physicians and 

patients are heterogeneous and health outcomes are uncertain. Patients differ in the potential 

benefits from an ICD implant, and physicians can only observe patient type imperfectly. 

Additionally, physicians and their teams differ in their ability in implanting ICDs, and they may 

have biased perceptions about their true ability.   

As noted above, while our model is couched in terms of a physician’s decision, our data is 

at the level of the hospital. This is because ICD procedures are typically team efforts; nurses, 

anesthesiologists, cardiologists, electrophysiologists, and technicians contribute at various stages 

to better or worse outcomes. For many hospitals, there is only one primary ICD-capable physician, 

in which case this assumption is innocuous; for larger hospitals we will be blending the choices of 

two or more physicians.16    

3.1 Static setting  

We begin with the decision faced by a physician, indexed by i.17 There is a continuum of 

patient types j that differ in their potential values of the ICD implant 𝑣𝑗  and of the alternative 

treatments 𝑤𝑗. The utility of a patient with type j that receives an ICD implant by a physician with 

skill level 𝑎𝑖 is 𝑣𝑗 + 𝑎𝑖; while her utility after receiving an alternative treatment is 𝑤𝑗. Without loss 

                                                           
16 We also assume that the ICD-capable physician makes the final decision about which patients to choose.  The 

networks of primary care physicians and how they “feed” patients to the ICD-capable hospitals may also affect 

choices of patients; see for example Moen et al. (2018). 
17 In our analysis, we omit demand-side factors – e.g., patient preferences unrelated to health – that lead to 

systematically overusing or underusing the procedure. While patient preferences may be important at the individual 

level, there is less evidence that such preferences can explain a large fraction of such variation across 

hospitals/regions (Cutler et al., 2019). 
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of generality, we interpret 𝑣𝑗  and 𝑤𝑗 as risk-adjusted values, by which we mean (a non-linear 

monotonic transformation of) outcomes for patient j (e.g., years of survival or mortality) after 

controlling for patient characteristics observable to the econometrician. This definition is 

symmetric to how we have controlled for risk factors in section 2 to construct hospital-level 

measures of risk adjusted mortality. 

We assume that 𝑣𝑗  and 𝑤𝑗 are independent and distributed normally.18  That is, 

𝑣𝑗~𝑁(�̅�, 𝜎𝑣
2) and 𝑤𝑗~𝑁(�̅�, 𝜎𝑤

2). Let 𝜇𝑗 denote the difference between the patient's potential value 

from receiving an ICD implant and her value from alternative treatments; 𝜇𝑗 ≡ 𝑣𝑗 −𝑤𝑗. It follows 

from the distributional assumptions made above that:  

𝜇𝑗~𝑁(�̅�, 𝜎𝜇
2),                                                           (3) 

where �̅� = �̅� − �̅� is the population mean of 𝜇𝑗, and 𝜎𝜇
2 = 𝜎𝑣

2 + 𝜎𝑤
2 . 

The Physician’s information structure and priors.  Physicians do not directly observe 𝜇𝑗, 

just an imperfect signal, s𝑗. 

s𝑗 = 𝜇𝑗 + 휀𝑗                                                              (4) 

where 휀𝑗 is normal with mean 0 and variance 𝜎ε
2. 

Physician may have a biased perception of their true skill, 𝑎𝑖; 𝑎𝑖
𝑝
 denotes the provider’s 

perceived skill. The gap between the perceived and true skill is the misperception bias, 𝑜𝑖.
19 

If  𝑎𝑖
𝑝 = 𝑎𝑖 the physician is unbiased in her assessed skill; 𝑎𝑖

𝑝 > 𝑎𝑖 corresponds to being 

overconfident (or overly optimistic), while 𝑎𝑖
𝑝 < 𝑎𝑖 denotes underconfidence.20  

Treatment decision. For the time being, we assume physicians obtain no private benefit or 

cost from implanting ICDs. Physician i will implant an ICD to patient j if the patient’s expected 

value from implanting an ICD given the signal s𝑗 is greater than the expected value from alternative 

treatment. That is, the physician treats if: 

𝐸[𝑣𝑗 − 𝑤𝑗 + 𝑎𝑖|s𝑗] ≥ 0.                                                        (5) 

                                                           
18 We have conducted the analysis allowing for correlation between patient types when treated and untreated and 

have found that the results are robust to this extension. 
19 For simplicity, we assume that 𝑜𝑖  and 𝑎𝑖 are uncorrelated. We have extended the analysis to allowing for 

correlation across doctors in these parameters and the results are completely consistent with those from the 

uncorrelated case.   
20 Our definition of overconfidence is similar to Malmendier and Tate’s (2015) in the context of CEOs: “We define 

overconfidence as the overestimation of the value a manager believes he or she can create.” (p. 46).  
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Given the information structure, the posterior distribution of the patient’s net type 

conditional on 𝑠𝑗 is  

2 2

2 2
| ~ ,j j js N

 

 

 
 

 

 
   

                                        (6) 

where the posterior mean, �̅�𝑗, is 

                                                �̅�𝑗 = (1 − 𝛼)�̅� + 𝛼𝑠𝑗,                                               (7) 

with 

2

2 2



 




 



. Recognizing that 𝐸[𝑣𝑗 − 𝑤𝑗|s𝑗] = �̅�𝑗, we can express condition (5), as  

(1 − 𝛼)�̅� + 𝛼𝑠𝑗 + 𝑎𝑖⏞            
𝑈𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑛𝑒𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑜𝑓 𝐼𝐶𝐷

+ 𝑜𝑖⏞
𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑏𝑖𝑎𝑠

≥ 0                                   (8) 

Expression (8) decomposes the net benefits from implanting an ICD perceived by the 

physician into two components. The first component – the unbiased net benefit – is the net benefit 

received by the patient if she is implanted an ICD. The second term – physician bias – captures 

the additional net benefit that the physician believes the implant brings the patient due to the 

physician bias in her perceived skill.  

Isolating 𝑠𝑗 from (8), it follows that the provider implants an ICD if she receives a signal 

𝑠𝑗 greater than a threshold 𝑠(𝑎𝑖
𝑝) defined by: 

                                   
1

( )
p

p i
j i

a
s s a




 


                                                     (9) 

where 𝑎𝑖
𝑝 = 𝑎𝑖 + 𝑜𝑖.  

ICD usage. Given the decision rule (9) and the distribution of types and signals, the 

probability of implanting an ICD for a physician with perceived skill 𝑎𝑖
𝑝
 is: 

  Pr( 𝐼𝐶𝐷 = 1) = ∫ 𝑓(𝑠)
∞

𝑠(𝑎𝑖
𝑝
)

𝑑𝑠,                                                             (10) 

where 𝑠(𝑎𝑖
𝑝) is defined by equation (9) and f(.) is the pdf of the signal 𝑠𝑗. That is, a normal 

distribution with mean �̅�, and variance 𝜎𝜇
2 + 𝜎𝜀

2. 

Proposition 1 (Determinants of diffusion). Ceteris paribus, the use of ICDs increases with 

perceived skilled, 𝑎𝑖
𝑝
.  

Proof:  

 
Pr( 1) (.)

( ) * 0p

ip p

i i

ICD s
f s a

a a

  
  

 
  because, from expression (9),  
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Intuitively, the threshold signal required to implant an ICD decreases with perceived skill. 

Note that expression (10) shows that the only physician-specific parameter that affects the ICD 

use rate is the perceived skilled of the physician, 𝑎𝑖
𝑝
.  Therefore, for a given skill, the use of ICDs 

increases with overconfidence, 𝑜𝑖; similarly, for a given level of oi, higher (true) skill induces a 

greater use of ICDs. Proposition 1 is the basis for the identification of perceived skill, 𝑎𝑖
𝑝
. Given 

the population parameters that define �̅�, 𝛼 and the distribution of signals, we use the observed ICD 

use rates to infer the physician’s perceived skill level.  

Outcomes. The outcome we measure in our dataset is the mortality rate conditional on an 

ICD implant. To use this information, we need to interpret what death means in our model. 

Naturally, the event of death (in the near term) represents a very low ex-post value for the patient. 

It also seems reasonable that a death that occurs further in the future is preferred to one occurring 

earlier. Accordingly, we interpret the death of the patient within x years as an ex-post utility below 

a threshold 𝜅𝑥, where 𝜅𝑥 is increasing in x. 

The x-years mortality rate conditional on an ICD implant for a physician with perceived 

skill, 𝑎𝑖
𝑝
, and actual skill, 𝑎𝑖, is:  

𝑃𝑟(𝑣𝑗 + 𝑎𝑖 ≤ 𝜅𝑥|𝐼𝐶𝐷 = 1) =
Pr(𝑣𝑗 ≤ 𝜅𝑥 − 𝑎𝑖 ∩  𝐼𝐶𝐷 = 1)

Pr( 𝐼𝐶𝐷 = 1|𝑎𝑖
𝑝
)

= 
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( ) ( ) ( )
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x i
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            (11)   

where 𝑓𝜀(. ) is the pdf for ε,  𝑓𝑣(. ) and 𝑓𝜔(. ) are the pdf for patient’s type vj and 𝜔𝑗, and 𝑓𝑠(. ) is 

the pdf for the signal s.  The following proposition characterizes the impact of true and perceived 

skill on conditional mortality. 

Proposition 2 (Determinants of mortality conditional on ICD implant).  (i) The 

probability of death conditional on implanting an ICD increases with the physician’s 

misperception, oi. (ii) Skill has an ambiguous effect on the mortality rate conditional on receiving 

the ICD.  However, (iii) conditional on a level of perceived skill, 𝑎𝑖
𝑝
, the probability of death after 

an ICD implant declines with true skill, 𝑎𝑖.  

Proof: The proofs are as follows: 

(i)  
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𝜕Pr (𝑣𝑗 + 𝑎𝑖 ≤ 𝜅𝑥| 𝐼𝐶𝐷 = 1)

𝜕𝑜𝑖
= 
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     (12) 

Both the first and third terms are positive, but the key is the middle expression; that when 

overconfidence rises, the “hurdle” point at which the physician does the procedure declines, thus 

expanding the number of patients for which the net benefit is negative.     

(ii)  

𝜕Pr (𝑣𝑗 + 𝑎𝑖 ≤ 𝜅𝑥| 𝐼𝐶𝐷 = 1)

𝜕𝑎𝑖
= −[

∫ ∫ 𝑓𝜀(휀′)𝑓𝜔(𝜔′)𝑓𝑣(𝜅𝑥 − 𝑎𝑖)𝑑𝜔′𝑑휀′
∞

−∞

∞

−∞

∫ ∫ 𝑓𝜀(휀′)𝑓𝜔(𝜔′)
∞

−∞
(∫ 𝑓𝑣(𝑣′)𝑑

∞

𝑠(𝑎𝑖
𝑝
)−𝜀

𝑣′)
∞

−∞
𝑑𝜔′𝑑휀′

] 
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Expression (13) shows that skill affects mortality by improving the outcomes for patients 

who would have been treated anyway (first term), but also by bringing in more patients with net 

benefit, but whose underlying mortality probability could be higher as well (second term).  As a 

result, the net effect of skill on conditional mortality is ambiguous. 

(iii) 
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□ 

While utilization is affected only by perceived skill, the average mortality of physician i’ 

patients with an ICD implant, conditional on population parameters, 𝜅𝑥, and perceived skill 𝑎𝑖
𝑝
, is 

determined by the true skill level of physician, 𝑎𝑖. Therefore, conditional on those parameters, we 

can identify the level of true skill in a hospital by inverting expression (11) after replacing in the 

left-hand-side the conditional mortality rate observed in the data. In summary, whether a given 
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patient receives an ICD is affected only by the physician’s perceived skill, but the likelihood of 

death is further affected by the physician’s true skill.  This insight is the basis for our identification 

of the model.  

A (slight) generalization. So far, the only source of physician bias we have considered is 

misperception of true skill. However, there may be other sources of bias that influence the decision 

to implant ICDs; we consider two here. The first bias reflects the possibility of misperception by 

all physicians of the average net value of an ICD. That is, instead of all physicians understanding 

that the true population mean of the treatment effect is �̅�, they may instead believe that �̂� ≠ �̅� is 

the correct value. Since information about the value of ICDs comes largely from professional 

journals and widely-reported trials, it is natural to model this bias as common for all physicians. 

The second bias we consider stems from the possibility that physician may derive a private benefit 

or cost, 𝐵𝑖, from implanting ICDs. Private benefits may be positive if a physician receives incentive 

payments from manufacturers or derives a high utility from the fees from implanting ICDs, and 

negative if she experiences high costs (psychic or otherwise) from performing the procedure 

(Cutler et al., 2019).  

In this general setting, a physician implants an ICD if: 

(1 − 𝛼)�̅� + 𝛼𝑠𝑗 + 𝑎𝑖⏞            
𝑈𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑛𝑒𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑜𝑓 𝐼𝐶𝐷

+ 𝑜𝑖 + (1 − 𝛼)(�̂� − �̅�) + 𝐵𝑖⏞                
𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑏𝑖𝑎𝑠

≥ 0        (14) 

This decision rule is isomorphic to expression (8) in the baseline model once we reinterpret the 

physician bias so that, in addition to including the physician’s overconfidence (𝑜𝑖), it also includes 

the common bias in the assessment of the net value of ICDs in population ((1 − 𝛼)(�̂� − �̅�)) and 

the physician’s private benefit from implanting the ICD (𝐵𝑖). We denote this generalized physician 

bias by 𝑂𝑖 (to highlight the symmetry with the bias in the baseline case, 𝑜𝑖). Importantly, the 

insights advanced above about how we can use the model to identify true and perceived skill extend 

naturally to the general setting. To see this, re-define perceived skill, 𝐴𝑖
𝑝
, as  

𝐴𝑖
𝑝 ≡ 𝑎𝑖 +𝑂𝑖 = 𝑎𝑖

𝑝 + (1 − 𝛼)(�̂� − �̅�) + 𝐵𝑖           (15) 

which reflects true skill plus the generalized physician bias. As in the baseline, perceived skill, 𝐴𝑖
𝑝
,  

can be identified by inverting expression (10) using as threshold signal 𝑠(𝐴𝑖
𝑝) defined as 

(1 )
( )

p
p i

i

A
s A




 


             (16) 
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Furthermore, conditional mortality is unaffected by this generalization because true skill is 

unchanged; conditional on the rate of ICD implants, mortality only depends on true skill.  

3.2 Dynamics of physician bias  

While the cross-sectional variation across hospitals in conditional mortality and ICD use 

is sufficient to identify physician skill (𝑎𝑖) and generalized physician bias (𝑂𝑖) in our static model, 

it does not separately identify the three possible sources for this bias (overconfidence, common 

bias, and private benefit). Additionally, because the model is static, it does not predict how bias 

will evolve over time. To address both issues, we extend our model to a dynamic setting; while 

true skill and private benefits do not change, we do allow for the evolution of both perception bias 

and the common evaluation across all providers of the ICD’s average benefit.  

We assume that in every period, physicians receive two unbiased signals. The first is 𝑠𝑎 =

𝑎𝑖 + 휀𝑎𝑖, which provides information about the physician’s true skill but contains noise, 휀𝑎𝑖 which 

has a zero mean and is distributed normally. The physician knows the precision (or inverse of the 

variance) of signal 𝑠𝑎 that we denote by 𝜌𝑎.  The second, 𝑠𝜇, is a common signal to all physician 

about the true average value of ICDs in the population, perhaps drawn from clinical journals or 

other sources; 𝑠𝜇 = �̅� + 휀𝜇, again where 휀𝜇 is zero-mean and normally distributed, with known 

precision 𝜌𝜇. 

Beliefs about 𝑎𝑖 and �̅� are random variables that we respectively denote as �̃�𝑖 and �̅̃�.21 We 

assume that the prior distribution of �̃�𝑖 is normal with mean 𝑎𝑖
𝑝
 and precision 𝜏 > 0. Providers’ 

common prior about the mean net value of ICDs in the population, �̅̃�, is distributed normal with 

mean �̂� and precision 𝜏𝜇 > 0. 

The following Lemma characterizes the posterior distributions of �̃�𝑖 and �̅̃� 

Lemma 1 (Posterior distribution of skill) The posterior distribution of �̃�𝑖 is normal with 

mean 𝑎𝑖
𝑝′ and precision 𝜏 + 𝜌𝑎, where:  

p
p i a a
i

a

a s
a

 

 

 



.     (17) 

The posterior distribution of �̅̃� is normal with mean �̂�′ and precision τµ+ 𝜌𝜇 where:  

                                                           
21 We use “ ̃ ” to denote random variables.  
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Proof: See De Groot (1971), page 167. □ 

At any given period t, the posterior distribution of a random variable constitutes the prior 

distribution at t+1. Using Lemma 1, and the definition of  𝐴𝑖𝑡
𝑝

, we can derive the following 

expression for its law of motion: 

∆𝐴𝑖𝑡+1
𝑝 = 𝐴𝑖𝑡+1

𝑝 − 𝐴𝑖𝑡
𝑝 = −𝛿𝑎(𝑎𝑖𝑡

𝑝 − 𝑎𝑖) − 𝛿𝜇(1 − 𝛼)(�̂�𝑡 − �̅�) + 휀𝑡       (19) 

where 𝛿𝑎 = 
𝜌𝑎

𝜏+𝜌𝑎
 , 𝛿𝜇 =

𝜌𝜇

𝜏𝜇+𝜌𝜇
 and 휀𝑡 = 𝛿𝑎휀𝑎𝑖𝑡 + 𝛿𝜇휀𝜇𝑡. 

In the special case we have used as baseline (i.e., �̂�𝑡 = �̅�, and 𝐵𝑖 = 0), 𝐴𝑖𝑡
𝑝 = 𝑎𝑖𝑡

𝑝
 and equation (19) 

becomes: 

∆𝑎𝑖𝑡+1
𝑝 = −𝛿𝑎(𝑎𝑖𝑡

𝑝 − 𝑎𝑖) + 𝛿𝑎휀𝑎𝑖𝑡          (20) 

Or equivalently, since 𝑎𝑖 is fixed,  

∆𝑜𝑖𝑡+1 = −𝛿𝑎𝑜𝑖𝑡 + 𝛿𝑎휀𝑎𝑖𝑡           (21) 

Since 𝛿𝑎 > 0, equation (21) demonstrates that learning about true skill induces mean-

reversion in overconfidence (i.e., hospitals with greater overconfidence tend to experience larger 

subsequent declines). The mean reversion in overconfidence generally induces mean reversion in 

perceived skill,22 leading to a reduction over time in cross-hospital variation in perceived skill and 

utilization rates if the initial variance is above its long-run level.23   

Going back to the general case, we note that 𝑎𝑖𝑡
𝑝 = 𝐴𝑖𝑡

𝑝 − 𝐵𝑖 − (1 − 𝛼)(�̂�𝑡 − �̅�) which 

allows us to express the mean reversion in perceived skill as: 

−𝛿𝑎(𝑎𝑖𝑡
𝑝 − 𝑎𝑖) = 𝛿𝑎𝐵𝑖 − 𝛿𝑎(𝐴𝑖𝑡

𝑝 − 𝑎𝑖) + 𝛿𝑎(1 − 𝛼)(�̂�𝑡 − �̅�)         (22) 

Plugging (22) in (19), and expressing (�̂�𝑡 − �̅�) as (�̂�𝑡 − �̅̂�) + (�̅̂� − �̅�) where �̅̂� is the 

average level of the perceived net value of ICDs (�̂�𝑡), we obtain the following expression for the 

evolution of 𝐴𝑖𝑡
𝑝

:   

  

                                                           
22 The exception would be when true skill and overconfidence are sufficiently negatively correlated. 

23 The long-run variance of overconfidence is 
𝛼𝑎
2𝜎𝜀

2

1−(1−𝛼𝑎 )
2
. 
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∆𝐴𝑖𝑡+1
𝑝 = ∆𝑂𝑖𝑡+1 = 𝛿𝑎𝐵𝑖⏞

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

− 𝛿𝑎(𝐴𝑖𝑡
𝑝 − 𝑎𝑖)

⏞        
𝑀𝑒𝑎𝑛 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑜𝑛

− 

(𝛿𝜇 − 𝛿𝑎)(1 − 𝛼)(�̂�𝑡 − �̅�)
⏞                

𝑇𝑖𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

+ 휀𝑡+1               (23) 

Equation (23) yields an intuitive framework to identify the three possible sources of the 

generalized overconfidence bias: pure overconfidence, common bias, and private benefit. Private 

benefits do not change over time and introduce a time-invariant hospital-specific intercept. 

Learning about common bias affects all hospitals equally and introduces a time-specific intercept. 

In contrast, learning about true skill introduces a negative relationship between (generalized) 

overconfidence and the change in perceived skill. While both forms of learning (true skill and net 

value of ICDs) can generate a negative drift in (generalized) perceived skill, only learning about 

true skills can reduce the cross-hospital variance in (generalized) perceived skill.  

 

4. Analysis 

In this section, we use our model to study the empirical regularities in Section 2. First, we 

identify the hospital-levels of true and perceived skill (𝑎𝑖 and 𝐴𝑖𝑡
𝑝

), with the difference between 

perceived and true skill capturing generalized overconfidence (𝑂𝑖𝑡 = 𝐴𝑖𝑡
𝑝 − 𝑎𝑖). Second, we 

analyze the relevance of each of them in explaining the patterns of variation in ICD use and 

conditional mortality across hospitals. Third, we use our model and estimates to evaluate the 

welfare effects arising from overconfidence and misperception more generally. Finally, we 

estimate dynamic models of overconfidence to study the role of learning for the evolution of 

perceived skill and its impact on the evolution of the cross-hospital distribution in ICD use and 

conditional mortality. 

4.1 Identification of parameters 

We identify the model parameters in two stages. First, we use information on moments 

from the entire distribution of hospitals to calibrate parameters that are common to all hospitals 

and that we denote as aggregate parameters. Once we have calibrated the aggregate parameters, 

hospital-level information on ICD use and conditional mortality in each year are used to identify 

the hospital-year levels of true and perceived skill.  

Calibrating the aggregate parameters. Without loss of generality, we normalize the 

average skill in population, �̅�𝑖, and the average utility of a patient with heart failure in the absence 
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of ICD treatments, �̅�, to 0. These parameters are isomorphic to �̅� in the ICD use equation (12), 

and to 𝜅𝑥 in the mortality rate equation (11). We also normalize the variance of the signals noise, 

𝜎𝜀
2, to 1, as the relevant moment for the ICD implant decision is the noise to signal ratio (𝜎𝜀

2/(𝜎𝑣
2 +

𝜎𝑤
2 , )).  

An important aspect of the calibration is to bridge the conceptual gap between the units in 

the model (i.e., utility) and in the outcomes we observe (i.e., mortality or years of survival). Using 

the logic of a probit specification, we calibrate the threshold 𝜅2 to match the unconditional 

mortality for patients with congestive heart failure (CHF) who do not receive an ICD.  We know 

the 2-year average mortality rate for treated CHF patients from the registry data, but calculate 

average mortality for untreated patients by subtracting the estimated treatment effects from the 

landmark randomized trial (Bardy et al., 2005) -- a 3 percentage-point reduction in mortality at 

two years -- from the mortality rate for treated patients. 

These normalizations leave us with 6 parameters to calibrate: the average levels of 

perception bias and the value of ICDs in the population (�̅� and �̅�), the variances of the patient 

values with and without treatment (𝜎𝑣
2, 𝜎𝑤

2), and the variances of true skill and provider bias 

(𝜎𝑎
2, 𝜎𝑂

2). To identify these parameters, we have six moments. Five of them are computed from the 

moments in our data: the mean and variance of ICD use rate across hospitals,24 the mean and 

variance of conditional mortality across hospitals, and the cross-hospital correlation between the 

ICD use rate and the conditional mortality rates.  Additionally, we use information on the ratio of 

the variance in life expectancy for treated and untreated patients during the ICD trials, equal to 

0.89 (Bardy et al. 2005), to calibrate the relative variance of the distribution of utility values 

(𝜎𝑣
2/𝜎𝑤

2).25 Using the variance ratio in mortality is a reasonable assumption to the utility-based 

variance ratio given that the sole purpose of ICDs is to reduce the risk of sudden cardiac arrest.  

We use this restriction as the sixth moment to calibrate the six aggregate parameters.    

                                                           
24 We target the rate of ICD use among eligible patients from Al-Khatib et al. (2012) which is 39.9 percent. 

They measure the implementation of ICD among patients hospitalized for heart failure during 2005-09 (as in our 

empirical analysis) that are eligible for ICD implantation. This seems the most natural denominator to consider in our 

context given that, despite the small share of potentially eligible patients with HF, over 90% of the ICDs in the registry 

data are administered among eligible patients. We use the ratio of the average ICD use rate among eligible patients 

(from in Al-Khatib et al. (2012)) and among patients with HF in our data to scale accordingly the standard deviation 

of the utilization rate. 
25 The variance of life expectancy was calculated for patients randomly assigned into the treatment and control 

groups over the 5-year trial period based on Figure 1 in Bardy et al. (2005).  The variance of life expectancy for 

treated patients was 2.48 years, while the variance for untreated patients was 2.80 years; the ratio is 0.89.     
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With six moments, the six parameters of the model are just identified (although with non-

linearities the model may not fit the moments exactly). Intuitively, the variance parameters are 

identified in the following way. The variance of the hospital distributions of skill and 

overconfidence are inferred from the cross-hospital variances and correlation of the ICD use rate 

and conditional mortalities. The variance of the ICD use rate across hospitals depends on the 

variance of perceived skill (𝜎𝑎
2 + 𝜎𝑂

2). The correlation across hospitals of the ICD use rate with 

conditional mortality depends on the relative contribution of skill versus overconfidence: when 

skill is a larger share of the variance there will be a negative correlation between ICD use and 

conditional mortality (higher skill hospitals have higher ICD use and lower conditional mortality); 

when overconfidence is a larger share of the variance there will be a positive correlation between 

ICD use and conditional mortality (more overconfident hospitals will have higher ICD use and 

higher conditional mortality).  

While these two moments identify the relative variance of skill and overconfidence, they 

are only identified up to a scale, analogous to a Probit.  The scale term translates the utility-based 

parameters into observable mortality risk. Therefore, we use observable variation across hospitals 

in mortality risk to identify the scale parameter linking the variance in mortality with the variance 

in utility (𝜎𝑣
2 + 𝜎𝑤

2).   Along with the relative variance of utility values (𝜎𝑣
2/𝜎𝑤

2 ), we can identify 

the variances of patient utilities with and without treatment (𝜎𝑣
2, 𝜎𝑤

2 ).  

The two remaining parameters are the average level of overconfidence and the average 

value of ICDs in the population (�̅� and �̅�). These are identified from the means of ICD use and 

conditional mortality. From equation 11 (the ICD use equation) the mean of ICD use depends on 

the mean of perceived skill (�̅� + �̅�). From equation 12 (the conditional mortality equation) the 

mean of conditional mortality depends on the both the mean of perceived skill (�̅� + �̅�) and the 

mean of actual skill (�̅�), which lets us separately identify the mean of overconfidence (�̅�). 

Intuitively, equation 12 has a Tobit-like structure, which identifies mean skill (�̅�) after controlling 

for the selection probability (through �̅� + �̅�).  

 The top panel of Table 4 reports the calibrated values for the aggregate parameters. There 

is large variation in perception bias across hospitals (variance 0.022, SD=.15) and a mean value 

for generalized overconfidence 𝑂�̅�  equal to 0.134, implying 82 percent of hospitals have positive 

generalized overconfidence. The variance in provider bias (𝜎𝑂
2) is greater than the cross-hospital 

variance in true skill (𝜎𝑎
2), and the variance of patient-specific variables (𝜎𝑣

2 and 𝜎𝑤
2 ) is much larger 



25 

 

than the variance of hospital-level variables (𝜎𝑎
2 and 𝜎𝑂

2). The bottom panel of Table 4 reports the 

targeted moments in the data and in the model and shows that the model matches well each of the 

targeted moments. 

The calibration of the variance and the mean of overconfidence are critical for the welfare 

implications from our analysis. Therefore, it is worth re-stating the data features that pin them 

down. That the variance of overconfidence is large relative the variance in skill follows from the 

positive correlation observed between conditional mortality and ICD utilization rates.  Mean 

overconfidence depends on the fraction of eligible patients who receive an ICD (which comes from 

Al-Katib et al. (2012)). Naturally, a lower ICD utilization rate would lead to a lower average 

misperception bias �̅�, potentially even a negative value. But if physicians were on average 

underconfident, we might expect the average ICD use rate to rise over time between 2006-13 as 

doctors learn more about their true skill.  Instead, we see a strong decline in ICD rates. Even though 

we do not use the evolution of the average ICD use rate to calibrate mean overconfidence 

explicitly, it is reassuring that the target level from the literature yields a calibrated value for mean 

overconfidence that is consistent with the aggregate evolution in ICD use. 

Hospital level parameters. Once calibrated, we use hospital-year data on ICD use and 

conditional mortality to identify skill and the degree of misperception for each hospital and year. 

Specifically, equation (11) shows that, given the aggregate parameters, the ICD use rate is fully 

determined by the level of perceived skill. Furthermore, equation (12) shows that, given the 

aggregate parameters and perceived skill, conditional mortality depends only on true skill. These 

observations imply that we can use data on conditional mortality and ICD use to identify 𝑎𝑖 and 

𝐴𝑖
𝑃 by inverting equations (11) and (12). Appendix Figures C.1 and C.2 plot the histogram of the 

identified parameters. We note geographic differences in misperception; the regions with greater 

generalized optimism or overconfidence are in the South (in particular, Texas), the Southeast, and 

the Great Lakes region (Michigan, Indiana, and Ohio).  

4.2 Determinants of ICD use and Mortality 

To better understand model mechanics, we conduct comparative statics exercises where 

we document in Table 5 the impact of reducing the mean and variance of skill and 

overconfidence for utilization and health outcomes. Column 1 reports the moments from the 
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actual data.26 We then report the moments holding true skill unchanged, but setting mean 

(column 2), variance (column 3) and both the mean and the variance (column 4) of 

overconfidence equal to zero. Finally, column (5) sets the variance in skill equal to zero. 

Setting the mean of overconfidence equal to zero predicts a decline in ICD use of about 

one fifth, from 0.378 to 0.314 of eligible CHF patients (Column 2). Because on average 

physicians are estimated to be overconfident; this holds also when setting both mean and 

variance equal to zero (Column 4). In contrast, setting the variance of overconfidence (column 3) 

or the variance of skill (Column 5) equal to zero has little impact on average ICD utilization. 

When we set the variance of overconfidence equal to zero, the standard deviation of ICD use 

across hospitals declines from 0.091 to 0.036, a 60 percent reduction in regional variation and 

roughly double the reduction when the skill variance is set to zero (0.067).  Setting both the 

mean and variance of overconfidence to zero (column 4) reduces the standard deviation of ICD 

use by roughly two thirds (to .033). 

Mortality conditional on an ICD declines when we set average overconfidence to zero, as 

fewer inappropriate patients are chosen, resulting in better outcomes among those treated. The 

standard deviation of mortality is little affected by reducing the mean of overconfidence (or the 

variance of overconfidence or skill).  As well, setting the variance in overconfidence to zero flips 

the correlation between ICD utilization and conditional mortality from 0.204 (Column 1) to -0.998 

(Column 3) as now the only source of heterogeneity across hospitals is in true skill, and hospitals 

with greater skill conduct more ICDs but also have lower conditional mortality rates.  

Correspondingly, eliminating the variance in skill makes ICD use near-perfectly correlated with 

conditional mortality because now the only source of cross-hospital variation is overconfidence, 

and more overconfident hospitals conduct more ICDs and have higher mortality rates.  

The key measure of welfare is the unconditional (overall) mortality across all eligible 

patients. While we don’t observe unconditional mortality in the data, we can calculate it based on 

our model. When both the mean and variance of overconfidence is set to zero, 2-year mortality 

                                                           
26 Note that, in general, moments do not coincide with those used as aggregate targets because those moments were 

for 2006 only and hospitals were weighted by volume. Additionally, the targeted correlation between ICD use and 

conditional mortality in the aggregate calibration is .0947, while the correlation between ICD use and our shrinkage 

estimate of conditional mortality in 2006 is notably higher (.2497). This is because the latter estimate is based on 

predicted (shrunken) hospital-specific random effects that exhibit a smaller variance than the true hospital-specific 

random effects.  
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declines from 0.175 to 0.170, or a reduction of 0.5 percentage points (Column 4). Relative to those 

who actually receive an ICD, the mortality effect is roughly 40% of the estimated 3 percentage 

point gains arising from ICD placement (Bardy et al., 2005).27  Note that there are gains (of similar 

magnitude) both from reducing the average rate of overconfidence (Column 2) and reducing the 

variance of overconfidence (Column 3) since both result in inefficient allocation of ICDs.  

To better understand the welfare effects of perception biases, we study how those vary 

across hospitals with different levels of overconfidence. Specifically, we sort hospitals into deciles 

based on their overconfidence, and focus just on the top and bottom decile hospitals. For the top 

decile, just over half (0.55) of eligible patients received an ICD; this declines to 0.35 when the 

mean and variance of overconfidence are set to zero.28  Unconditional mortality on the other hand 

is predicted to decline by 0.021, from 0.180 to 0.159. What this means is that for these top-decile 

hospitals, setting overconfidence equal to zero leads to 20 fewer ICDs (per 100 overall patients) 

and 2.1 fewer deaths, or a reduction of more than 10 percent in mortality for this group (2.1/20).  

By contrast, in the lowest decile, hospitals are slightly underconfident, and when overconfidence 

is set to zero ICD rates rise from 0.25 to 0.28, with very little change in mortality (from 0.179 to 

0.178).  Therefore, the welfare gains from eliminating misperceptions are larger in hospitals with 

the greatest degree of overconfidence. 

4.3 Dynamics of perceived skill  

So far, we have used the static model developed in Section 3.1 to estimate the distribution 

of perceived skill and overconfidence from the cross-section of ICD use and mortality. In this 

section, we use the simple dynamic model developed in Section 3.2 to study how learning affects 

overconfidence and the evolution of perceived skill over time, and the implications this has for the 

evolution of the cross-hospital distribution in ICD use and conditional mortality.  

Estimating the dynamic model is useful for three reasons. First, it provides evidence on the 

rate at which hospitals learn about their own over-confidence. This parameter is key to 

understanding how both the average ICD use rate and its variance across hospitals will decline 

over time due to learning. Second, as shown in section 3.2, our dynamic model allows us to 

                                                           
27 That is, we divide the decline in overall mortality (-0.005) by the fraction receiving an ICD (0.378), or a 1.3 

percentage point reduction in mortality among those receiving an ICD; this in turn is slightly more than 40 percent 

of the estimated gains of 3 percentage points in the RCT.   
28 Average ICD rates are slightly higher than the overall mean of 0.247 because these hospitals also exhibit above-

average skill. 
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separately identify the proportion of generalized overconfidence that is due to private benefit. This 

component is not eliminated by learning and will lead to persistent inefficiencies due to over-use 

of ICDs. Finally, we can use estimates of the dynamic model from our first years of data to conduct 

out-of-sample forecasts of ICD use and conditional mortality, and compare these to actual values 

as a test of the validity of our model. 

Full sample estimates. We use the identified hospital-level parameters from 2006-2013 to 

estimate specification (24), which is an econometric counterpart to the law of motion for perceived 

skill derived in the learning model (equation 23): 

1 1

p

it i a it t itO O           (24) 

In the model’s simplest form, we set the intercept equal across hospitals ( i  ) and assume there 

is no learning about the common bias so there are no time effects  0t  . This results in a simple 

regression of the change in perceived skill from t to t+1 on the level of generalized overconfidence 

in t. In a more general model, we allow for time effects and for i  to be a function of hospital 

characteristics (adding dummies for hospital ownership and teaching status).   

The first column of Table 6 provides estimates of the simplest model with a common 

constant term and no year effects. The slope coefficient on itO (-0.215; s.e. 0.007) is an estimate 

of a in our learning model (e.g., .215a  ).  This implies rapid learning: On average, 21.5% of 

misperception about skill in year t is gone by year t+1, yielding an average half-life for hospital 

misperceptions of their skill of about 3 years. In addition, the intercept (0.0104, s.e. 0.0011) is an 

estimate of aB in our learning model, where a is the rate of learning (.215) and B is the average 

private benefit. Thus, dividing the intercept from this regression by our estimate of  provides an 

estimate of the average private benefit: B=.0104/.215=.048 (delta method s.e.=.004). Note that B 

is simply the steady-state point in our learning model; the generalized overconfidence of .048 is 

associated with no average change in perceived skill. This estimate implies that approximately 

36% of the average generalized overconfidence (.134 from Table 4) is due to private benefit, while 

the remaining 64% is due to physician’s being initially overconfident about their skill at 

performing ICDs. While the estimate of a suggests that learning about skill will rapidly eliminate 

overconfidence about skill, our estimate of B suggests that there will remain a persistent bias 

toward over-use of treatment due to private benefit. 
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The private benefit that a hospital receives from doing ICDs may vary across hospitals due 

to how different hospitals weight the revenue from performing ICDs against their reputation for 

providing appropriate care. In column 2 of Table 6 we add dummies for hospital ownership (for-

profit and government relative to not-for-profit) and if the hospital was a major teaching hospital. 

The coefficient on for-profit ownership is positive and significant. The estimated coefficients from 

column 2 imply that the private benefit at for-profit hospitals ((.0102+.0050)/.219 = .069) is about 

50% larger than the private benefit at not-for-profit hospitals (.0102/.219=.047). This estimate is 

consistent with the view that for-profit hospitals place more weight on generating revenue than do 

not-for-profit hospitals. In contrast, the coefficient on being a major teaching hospital is a bit larger 

in magnitude but negative and significant, implying that teaching hospitals have roughly 60% 

lower private benefit than non-teaching hospitals. Again, this would be consistent with the view 

that teaching hospitals place more weight on providing appropriate care than non-teaching 

hospitals. 

The third column of Table 6 adds year dummies. While the year dummies are jointly 

significant, adding them to the regression has little impact on the remaining coefficients. The 

coefficients on the year effects are estimates of ˆ( )(1 )( )a i a tB          in the learning 

model, which capture both private benefit (constant over time) and common learning across all 

hospitals (which may vary over time).  This means that the year dummy variables cannot separately 

identify private benefits from the average of common learning across years. Based on increasing 

clinical concerns over the effectiveness of ICDs (e.g., McMurray, 2016), we might expect the 

mean change in common learning to be negative over these years which would imply that, if 

anything, the intercept is an under-estimate of private benefits. The average intercept across years 

reported in column 3 is very similar to the intercept reported in column 2, and therefore implies 

similar estimates of private benefits under the conservative assumption that changes in common 

beliefs are mean zero.    

There are two reasons that OLS estimates of the learning parameter a could be biased. 

First, classical measurement error in the estimate of generalized overconfidence ( itO ) would bias 

the OLS coefficient on itO in the negative direction (since the dependent variable is 1it itO O 

leading to an over-estimate of learning. If measurement error is independent across years, then 

1itO   is a valid instrument for itO . Estimating the specification in Column 3 of Table 6 by 2SLS 
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using lagged overconfidence as an instrument yields an estimate of a equal to 0.128 (s.e., 0.008), 

which is somewhat smaller than OLS but still suggests that learning eliminates overconfidence 

over time with a half-life of around 5 years.  

Alternatively, variation across hospitals in private benefit (Bi) that are not captured by 

ownership and teaching status would bias the OLS coefficient on itO  in the positive direction 

(since both the unobserved intercept and itO  depend positively on Bi), leading to an under-estimate 

of learning. If the learning process about ito follows an AR(1) and measurement error is 

independent across years, then differencing equation (24) to remove the hospital-specific intercept 

and instrumenting for itO  using 2itO   would yield unbiased estimates of the learning parameter 

(Arellano and Bond, 1991). Estimating the specification in column 3 by this Arellano-Bond 

method yields an estimate of a equal to 0.466 (s.e., 0.067), which is somewhat larger than OLS 

and suggests that learning eliminates overconfidence over time more rapidly with a half-life of 

around 1 year.  

Both the measurement error correction and the Arellano-Bond correction may also suffer 

from bias, however, because both assume that measurement error in itO  is independent over time. 

This is unlikely to hold in our data: itO  is a function of both the ICD rate and the conditional 

mortality rate at each hospital, and the conditional mortality rate was estimated using Bayesian 

methods that smooth variation over time which may generate serial correlation in the measurement 

error. While all three approaches are consistent with a model of learning, we rely on OLS – the 

intermediate estimate -- as our preferred estimation approach. 

 In sum, the full-sample estimates are consistent with our dynamic learning model. They 

imply that hospital learning over time will reduce both average over-confidence and the variation 

across hospitals due to overconfidence, but that private benefits will lead to persistent over-use of 

ICDs. 

Out-of-sample analysis. To study the role of learning for the evolution of (generalized) 

perceived skill and hospital level outcomes we conduct an out-of-sample prediction exercise. 

Specifically, we estimate the learning model using a single cross section of data from 2006 

(regressing the change in generalized overconfidence from 2006 to 2007 on generalized 

overconfidence in 2006). We then use the estimated intercept and learning parameter to conduct 
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sequential out-of-sample forecasts of generalized overconfidence and perceived skill, holding 

hospital skill constant at its 2006 level. We then compare the resulting forecasts for 2013 to actual 

values as a test of the validity of our model and an illustration of the implications of our estimates. 

In the final two columns of Table 6, we re-estimate the specifications from columns 1 and 

2 using the cross section of hospitals in 2006 (there is no need for year dummies with a single year 

of data). The reversion parameter  is estimated to be very similar to that for the full sample (.213, 

s.e. .0227 in Column 4, for example), as is the constant term.  Given that the coefficients on 

ownership and teaching are not estimated with any precision (Column 5), we use the simpler 

version from column 4 to perform the prediction models.  

Figure 8A presents the scatter plot of the change in perceived skill induced by learning 

from 2006 to 2013 against the initial (generalized) overconfidence. There are large differences 

across hospitals in the changes in perceived skill induced by learning ranging from -0.6 to 0.4, 

with more overconfident doctors experiencing larger reductions in perceived skill. Overall, this 

negative correlation between initial level and the longer run predicted change in overconfidence 

suggests that learning leads to substantial reductions in the both the mean and variance of 

overconfidence. 

Table 7 compares how the actual moments of ICD use and conditional mortality changed 

between 2006 and 2013 to the predictions based on our dynamic model. The model is fit to the 

2006 parameters and so predicts them exactly, as shown in the first two rows of Table 7. The mean 

of ICD use fell from 43.8 percent in 2006 to 33.4 percent in 2013. Our learning model generates 

66 percent of this decline in ICD use, as the average ICD use associated with the distribution of 

overconfidence levels predicted in 2013 is equal to 36.9 percent. Our model also predicts the 

decline between 2006 and 2013 in the standard deviation of ICD use across hospitals, although 

somewhat over-predicts the magnitude. Similarly, the model predicts the decline in the mean and 

cross-hospital standard deviation of conditional mortality but over-predicts their magnitudes.  

Beyond these trends in aggregate moments, we can evaluate the importance of learning 

dynamics by studying the association across hospitals on actual and predicted changes in ICD use 

and conditional mortalities. Figures 8B and 8C plot the changes in ICD use (8B) and conditional 

mortality (8C) across hospitals in the model’s out-of-sample forecasts and in the data. The 

correlations between the model’s out-of-sample forecasts and the data are .68 for changes in ICD 

use and .43 for changes in conditional mortality. Thus, the learning model not only predict a 
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substantial portion of the large aggregate changes in ICD use observe in the data, but it correctly 

predicts the evolution for individual hospitals. We take this finding as evidence that learning is 

key for the evolution of ICD use rates and conditional mortality across hospitals.  

Before concluding, it is pertinent to revisit the interpretation of 
io in our model. While we 

have interpreted this parameter as pure physician over- (or under-) confidence, there is the 

possibility that 𝑜𝑖 reflects doctor-specific biases in the perceived value of ICDs (i.e. �̂�𝑖 − �̂�), as 

opposed to the doctor’ skill in implementing them. Under this view, the variation in generalized 

overconfidence occurs because some physicians read the medical journals, while others don’t. In 

theory, this could be an important factor, but in practice it seems unlikely; to our knowledge there 

were no new landmark studies (between 2006 and 2013) shedding light on appropriateness for 

older ICD patients, and overall mortality among patients receiving ICDs was stable over time.29  

In sum, we believe the documented perception biases are more likely to be about the doctor’s true 

skill than about the net value of ICDs in the larger population. 

5. Conclusions 

What determines the adoption and diffusion of new technologies?  Research in 

economics has focused on factors primarily related to rates of return, input prices, differential 

factor productivity, or profitability. We find an additional factor in adoption and diffusion: 

Variation in the adopter’s perceptions of their own skill and abilities in using the new 

technology. In the case of implantable cardioverter defibrillators (ICDs), we have estimated that 

variation in these perceptions – independent of true skill – accounts for roughly two-thirds of the 

cross-hospital variance in ICD use and reduced the average health benefits of the new technology 

by 40 percent. On average, physicians are overconfident, in the sense of having inflated views of 

their own skills leading to higher utilization rates but often with poor outcomes. We also found 

that physicians learn about these perception biases and reduce them over time. Learning 

dynamics account for two-thirds of the decline in ICD use over the period 2006-2013. 

Misperceptions may be an important determinant of adoption dynamics in other settings 

where adopters are on average overconfident (as in our case) or underconfident. The average 

sign of the bias will affect the level of adoption and patterns of diffusion. In cases with average 

                                                           
29 Additionally, in estimates not reported, we have observed that the learning rate of a hospital is decreasing in the 

doctor’s true skill. The fact that learning rates are correlated with hospital-level variables/parameters is natural when 

learning is about hospital-specific parameters, such as skill. 
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under-confidence, misperceptions will cause (inefficiently) slow diffusion of technologies, a 

commonly observed phenomena in the diffusion literature (Rogers, 2004), while in cases with 

average overconfidence, diffusion is too rapid, and typically followed by a scaling back of 

investments as we observe in ICDs and for other innovations.30  Understanding the determinants 

of the initial bias in the adopters’ perceptions is beyond the scope of this paper, but certainly is 

an important question for future research. 

A central focus of this paper is the presence of unobserved heterogeneity among adopters 

in the returns to using a given technology. We believe the methods developed in this paper can 

be applied more generally to distinguish between the roles of perception biases versus true 

fundamentals in technology diffusion. Indeed, an early example of this question arose in a debate 

between rural sociologists and economists regarding the seemingly slow adoption of hybrid corn 

among farmers during the 1930s and 1940s (Griliches 1957, 1960, 1962; Babcock 1962; Havens 

and Rogers 1961). While sociologists argued that it was due to heterogeneity in beliefs about the 

perceived benefits, Griliches argued that the variation was because of heterogeneity in the returns 

to using the technology (Skinner and Staiger, 2007).  Our findings suggest a larger influence of 

beliefs, with a more modest role for the rate of return (e.g., true skill) in explaining such 

variations.  

These findings are relevant for policies designed to improve the allocative efficiency of 

technology adoption even outside of health care.  In an ideal world, strategies could be 

implemented to reduce the variance in skill ( ia ) by encouraging physicians to learn from the 

most highly skilled physicians, much as pineapple farmers learned from their most productive 

neighbors (Conley and Udry, 2010). We know less about how existing physician networks 

contribute to physicians either learning about their skill or improving it (Agha and Molitor, 2018; 

Moen et al., 2018). But even in the absence of policies that directly improve skill levels, our 

findings suggest that efforts to reduce the degree of perception bias in technology adoption 

would improve allocative inefficiency and enhance consumer welfare.  

                                                           
30 As Jupiter and Burke (2013) wrote, “Artelon® arthroplasty, thermal shrinkage, Vioxx®, metal-on-metal hip 

arthroplasty, and Infuse® bone grafting in the spine—all had come onto the “market” with enthusiastic reports only 

to fall from grace to unhappy outcomes, permanent disabilities, and malpractice litigation. (p. 249).”  
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Figure 1: Implantable Cardioverter Defibrillator (ICD) Use for Patients with Diagnosed 

Congestive Heart Failure (CHF) for Selected Hospital Referral Regions: 2002-13  
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Figure 2. Percent of Congestive Heart Failure (CHF) Patients Receiving an Implantable 

Cardioverter Defibrillator (ICD), by Hospital Referral Region: 2006 
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Figure 3: Correlation between 2002-05 and 2006-13 Changes in ICD Implantation Rates for 

Heart Failure Patients, by Hospital Referral Regions 

Note: This sample is restricted to Hospital Referral Regions with at least 11 ICDs.    
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Figure 4: Schematic to Show How ICD Utilization Rates are Assigned to Hospitals, and How 

Hospital Mortality Rates are Assigned to Hospital Referral Regions (HRRs).  
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Figure 5: Distribution of Risk-adjusted Random-Effects 2-Year Mortality by Hospital:  

2006-13 
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Figure 6: Evolution of One-Year (Bottom) and Two-Year (Top) Mortality Following ICD 

Procedure: 2006-13 

Notes: 95% Confidence Intervals shown by dashed lines. Estimates based on patients receiving an 

ICD in the Registry with follow-up in the Medicare claims data.  Aggregated data not risk-adjusted.  
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Figure 7:  Correlation Between Average Implantable Cardioverter Defibrillator (ICD) 

Utilization (2006-13) and 2-Year Risk-adjusted Mortality 
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Figure 8A:  Change in Overconfidence (2006-2013) from out-of-sample forecasts based on 

learning model vs. generalized overconfidence in 2006, by hospital. 
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Figure 8B:  Actual Change in ICD Utilization Rates versus Predicted Out-of-Sample Change 

in ICD Utilization Rates, 2007-13, by Hospital 
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Figure 8C:  Actual Change in Conditional Mortality Rates versus Predicted Out-of-Sample 

Change in Conditional Mortality Rates, 2007-13, by Hospital 
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Table 1: Summary Statistics for ICD Registry Data  

 

Variable Mean 

Standard 

Deviation 

2-Year Mortality: 2006-13  0.218 0.413 

  2-Year Mortality: 2006 0.219 0.414 

  2-Year Mortality: 2013 0.216 0.411 

1-Year Mortality: 2006-13 0.123 0.328 

  1-Year Mortality: 2006 0.122 0.328 

  1-Year Mortality: 2012 0.118 0.323 

Fraction Inappropriate 0.098 0.297 

Ejection Fraction (Percentage) 25.76 7.319 

Fraction with EF > 35% 0.034 0.182 

Fraction Class I 0.029 0.169 

Fraction Class IV 0.043 0.202 

Age  74.90 6.248 

Previous cardiac arrest 0.020 0.142 

Family history: Sudden death 0.030 0.171 

Ventricular tacchycardia  0.225 0.418 

Non-isch, dilated cardiomyopathy 0.320 0.467 

Ischemic heart disease 0.696 0.460 

Previous myocardial infarction 0.548 0.498 

Previous CABG 0.395 0.489 

Previous PCI 0.345 0.475 

Electrophysiology study 0.083 0.276 

VT indication (ES study) 0.021 0.143 

Female 0.282 0.450 

Black 0.101 0.301 

Hispanic (Medicare) 0.052 0.222 

Other race 0.025 0.157 

Hispanic ethnicity (Registry) 0.051 0.219 

 

Notes: N=238,059. Sample includes all patients age 65 and over with CHF receiving a primary 

ICD between January 1, 2006 and December 31, 2013.  
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Table 2: Selected Characteristics of Patients Treated in Hospitals in the  

Top and Bottom Quartile of risk-adjusted ICD Rate 

 

Variable 

Bottom  Quartile 

(low rate) 

Top Quartile 

(high rate) 

Risk-adjusted ICD rate at hospital 0.88% 1.59% 

Inappropriate for ICD 9.02% 10.6% 

>20% 1-year mortality risk 9.45% 11.71% 

>20% 2-year mortality risk 55.2% 60.5% 

Class IV CHF  3.69% 4.90% 

 

Notes: N=59,107 in bottom quartile and 60,029 in top quartile. Patients were sorted into quartiles 

based on the risk-adjusted ICD rate for the hospital in which they received their ICD. Mortality 

risk based on prediction from mortality probit using clinical risk factors and demographics 

described in the text. All differences reported in the table between top and bottom quartile are 

highly statistically significant (p<.001). 
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Table 3: Regression Coefficients for OLS, Random, and Fixed Effects Models: Two-Year Mortality 

 

 
  (1) (2) (3) (4) (5) (6) 

VARIABLES OLS OLS 

Random 

Effect 

Random 

Effect 

Fixed 

Effect Fixed Effect 

          
Hospital-level ICD Rate 1.049 1.427 0.952 1.288 0.238 0.590 

 (0.441) (0.432) (0.434) (0.429) (0.683) (0.694) 

Ln(hospital volume)  -0.0126  -0.0126  -0.00951 

  (0.00139)  (0.00132)  (0.00289) 

Hospital-level Rx Rate  -0.121  -0.126  -0.120 

  (0.0193)  (0.0187)  (0.104) 

       
Observations 238,059 237,466 238,059 237,466 238,059 237,466 

R-squared 0.046 0.047     0.058 0.058 

Number of Groups     1,608 1,617     

       
 

Notes: Dependent variable is 2-year mortality. All regressions control for year effects and full set 

of clinical and demographic variables as reported in appendix table B2(a). Standard errors reported 

in parentheses, and are clustered at the hospital level in the OLS and FE models. Random effect 

model includes hospital and hospital-year random effects. Fixed effect models include hospital 

fixed effects. 

 

 

 

 

 

 

 

 

 

 



51 

 

Table 4: Calibration of Aggregate Parameters and Target Moments in the Model and Data 

 

Means and Variances of Model Parameters 

 Mean Variance 

Potential value of the ICD: treatment ( )  -0.324 0.475 

Potential value without an ICD: control ( ) 0* 0.534 

Skill ( ) 0* 0.010 

Overconfidence ( ) 0.134 0.022 

Moments in the Data and the Model 

 Data Model 

Average ICD rate for appropriate patients    .399      0.399 

Standard Deviation of ICD rates across providers         .095      0.093  

Average mortality conditional on ICD         .2187     0.2175 

Standard deviation of mortality conditional on ICD  0.03     0.0385 

Correlation of ICD rate and conditional mortality  0.092     0.092 

Notes: Normalized means denoted by an asterisk. The variance of is assumed to be 1.0. 
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Table 5:  Comparative Statics: Simulated ICD Utilization and Mortality Effects of Changes 

in Parameter Values 

 

  

 (1) 

Data 

Baseline 

(2) 

Mean of 

0io   

(3) 

Variance  

( ) 0iVar o   

(4) 

Mean 0io   

and Variance 

( ) 0iVar o   

(5) 

Skill 

Variance 

( ) 0iVar a   

ICD Utilization (Fraction) 0.378 0.314 0.376 0.309 0.377 

Standard Deviation of 

ICD Utilization Across 

Hospitals 

0.091 0.086 0.036 0.033 0.067 

Overall Mortality  0.175 0.172 0.172 0.170 0.174 

Mortality Conditional on 

ICD 
0.222 0.200 0.222 0.200 0.222 

Standard Deviation of 

Conditional Mortality 

Across Hospitals 

  

0.020 0.019 0.020 0.019 0.022 

Correlation between ICD 

Utilization and 

Conditional Mortality  

0.204 0.263 -0.998 -0.994 0.999 
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Table 6: Regressions Explaining the Hospital-Level Change in Generalized Overconfidence 

 

Notes: The dependent variable is the change in generalized overconfidence from year t to t+1.  The 

constant term reported in (3) is the average of the year effects.  

 

 

Table 7: Calibration of Aggregate Parameters and Target Moments in the Model and Data 

 

 ICD Use Conditional 2 Year Mortality 

 Mean Standard 

Deviation 

Mean Standard 

Deviation 

2006: Data 0.438 0.102 0.224 0.021 

2006: Model 0.438 0.102 0.224 0.021 

 

2013: Data 0.334 0.071 0.221 0.021 

2013: Model 0.369 0.047 0.204 0.018 

 

Notes:  Model initially calibrated to match 2006 actual data.  Correlation by hospital between 

change in model and change in data is 0.68 (ICD use) and 0.43 (conditional 2-year mortality).  

  

  (1) (2) (3) (4) (5) 

Years: All All All 2006-7 2006-7 

            

Generalized Overconfidence  -0.215 -0.219 -0.221 -0.213 -0.212 

in Year t (0.00711) (0.00725) (0.00769) (0.0227) (0.0233) 

      

For-Profit Hospital 
 

0.00497 0.00525 
 

-0.00671 

 

 
(0.00184) (0.00185) 

 
(0.00547) 

      

Government Hospital 
 

0.00436 0.00447 
 

-0.00491 

  (0.00221) (0.00221)  (0.00671) 

      

Major Teaching Hospital 
 

-0.00633 -0.00690 
 

-0.00306 

 

 
(0.00184) (0.00187) 

 
(0.00571) 

 

     

Constant 0.0104 0.0102 0.0105 0.0107 0.0124 

 (0.00111) (0.00121) (0.00127) (0.00432) (0.00445) 

 

     

Year Effects? No No Yes No No 

Observations 8,032 8,032 8,032 1,109 1,109 

R-squared 0.145 0.147 0.221 0.156 0.157 
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Appendix  

A:  Description of risk-adjustment to create regional measures of ICD use, 2002-13 

The goal was to create HRR-level measures of ICD utilization in a cohort limited to congestive 

heart failure (CHF) patients. The cohort was created in each year by including Medicare enrollees 

aged 65+ (as of January 1), living in the U.S., and with full enrollment for the calendar year in fee-

for-service Parts A and B, who fulfill the CHF definition from the Carrier Files with the following 

DX codes in any position; 40201, 40211, 40291, 425x-4259, 428x-4289, 4293, 40401, 40403, 

40411, 40413, 40491, 40493. An ICD was determined by the Part B CPT code 33249. We used a 

20 percent sample for 2002 (thus some of the regions do not report ICD rates because the total 

number of ICDs is less than 11), a 40 percent sample for 2003-05, and 100 percent for 2006 going 

forward.  

We further seek to risk adjust ICD rates by considering additional health and socioeconomic 

factors that could affect the likelihood that the individual CHF patient receives an ICD.  These 

include ZIP-code income (based on American Community Survey data), an individual measure 

for dual eligibility in Medicaid (which is either a marker for poor health, low income, or both), 

and county-level estimates of smoking, diabetes, obesity, and binge drinking.  (Because the CDC 

ceased reporting some of the county level data in 2012, the later year-specific county health 

measures use the last year reported).   

The regression estimates were estimated separately by year using a Probit model with HRR fixed 

effects; the HRR fixed effects, evaluated for a patient with average ICD risk, were used to create 

the risk-adjusted measures of ICD utilization rates.  As can be seen from the results in Table B.2 

below, once one conditions on CHF, the only strong predictors of ICD are age (with younger 

Medicare enrollees far more likely to receive the ICD) and dual-eligibility, which is negatively 

associated with ICD use.  This negative association could be the consequence of poorer access to 

health care; more likely is that for the very sickest CHF patients, those with Class IV (well-

advanced) CHF, ICDs are contraindicated.  

  



55 

 

 

Table B.1: Risk Adjustment Probit Regression Coefficients for ICD Implantation in Selected 

Years: 2002, 2006, and 2013 

 

 
2002 2006 2013 

Variable 
Coefficient 

Estimate 

Standard 

Error 

Coefficient 

Estimate 

Standard 

Error 

Coefficient 

Estimate 

Standard 

Error 

Age 65-69 0.6989 0.0224 0.6332 0.00687 0.6096 0.00761 

Age 70-74 0.6531 0.0219 0.6123 0.00672 0.5841 0.00753 

Age 75-79 0.5738 0.0218 0.5611 0.00663 0.5361 0.00759 

Age 80-84 0.4279 0.0228 0.4118 0.00689 0.4205 0.00783 

Female -0.5229 0.0169 -0.455 0.00503 -0.3801 0.00599 

Black 0.0604 0.0382 0.0236 0.012 0.0146 0.0127 

White  0.1177 0.0320 0.0457 0.010 0.00635 0.0103 

Log ZIP Median Income 0.0168 0.0301 0.0122 0.0103 0.0183 0.012 

% ZIP in Poverty -0.2123 0.1415 -0.0247 0.0468 0.0531 0.0541 

Dual-Eligible -0.1981 0.0169 -0.1594 0.00533 -0.1334 0.00606 

County Smoking Rate -0.00548 0.00226 -0.00148 0.00071 0.00008 0.00089 

County Diabetes Rate -0.00773 0.00685 -0.00832 0.00205 -0.00824 0.00208 

County Obesity Rate 0.00052 0.00244 0.00235 0.00076 0.00301 0.00082 

County Binge Drinking 0.00027 0.00348 0.00281 0.00127 0.0021 0.00136 

       
Sample % of Medicare  20% 

 
100% 

 
100% 

 
Sample Size  891,352 

 
4,494,897 

 
3,840,332 

 
Mean ICD Rate 0.0066 

 
0.0127 

 
0.0099 

 

       
Sample comprises people who have been diagnosed with CHF in that year 

(HCC85 = 1).   

 

Excluded variables: Age = 85+, Race/ethnicity = Other (Includes Hispanic) 
  

 

  



Table B.2(a):  Random-Effects (RE) Regression Estimates (Full Set of Regression Coefficients) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 
Death1yr Death1yr Death1yr Death1yr Death2yr Death2yr Death2yr Death2yr 

                  

HRR-level ICD 

Rate 1.076*** 1.464*** 1.287*** 0.910*** 
 

0.952** 1.555*** 1.288*** 

 
(0.340) (0.340) (0.338) (0.339) 

 
(0.434) (0.431) (0.429) 

Ln(volume) 

 

-

0.00795*** 

-

0.00794*** 
   

-

0.0125*** 

-

0.0126*** 

  
(0.00104) (0.00104) 

   
(0.00133) (0.00132) 

HRR-level Rx Rate 

  
-0.0895*** 

-

0.0908*** 
   

-0.126*** 

   
(0.0145) (0.0148) 

   
(0.0187) 

Ejection Fraction 

(EF) <20% 
-

0.00344*** -0.00345*** -0.00345*** 

-

0.00344*** 

-

0.00467*** 

-

0.00468*** 

-

0.00469*** 

-

0.00468*** 

 
(0.000353) (0.000353) (0.000354) (0.000354) (0.000442) (0.000442) (0.000443) (0.000443) 

EF 20-25% 
-

0.00463*** -0.00463*** -0.00463*** 

-

0.00463*** 

-

0.00556*** 

-

0.00556*** 

-

0.00554*** 

-

0.00554*** 

 
(0.000407) (0.000407) (0.000408) (0.000408) (0.000510) (0.000510) (0.000510) (0.000510) 

EF 25-30% 
-

0.00212*** -0.00213*** -0.00213*** 

-

0.00212*** 

-

0.00361*** 

-

0.00363*** 

-

0.00364*** 

-

0.00362*** 

 
(0.000396) (0.000396) (0.000397) (0.000397) (0.000496) (0.000496) (0.000497) (0.000497) 

EF 30-35% -0.000750 -0.000741 -0.000738 -0.000747 -0.00113* -0.00112* -0.00110* -0.00111* 

 
(0.000481) (0.000480) (0.000481) (0.000481) (0.000601) (0.000601) (0.000602) (0.000602) 

EF > 35% 0.00161*** 0.00161*** 0.00160*** 0.00160*** 0.00213*** 0.00213*** 0.00210*** 0.00210*** 

 
(0.000304) (0.000304) (0.000305) (0.000305) (0.000381) (0.000381) (0.000382) (0.000382) 

EF Missing 0.0191*** 0.0185*** 0.0189*** 0.0196*** 0.0236*** 0.0227** 0.0218** 0.0228** 

 
(0.00712) (0.00712) (0.00715) (0.00715) (0.00891) (0.00891) (0.00895) (0.00895) 

NY Heart Assoc. 

Class II 0.00221 0.00217 0.00171 0.00178 0.00378 0.00373 0.00324 0.00332 

 
(0.00407) (0.00407) (0.00408) (0.00408) (0.00510) (0.00510) (0.00510) (0.00511) 

NY Heart Assoc. 

Class III 0.0476*** 0.0477*** 0.0473*** 0.0472*** 0.0690*** 0.0691*** 0.0686*** 0.0685*** 

 
(0.00400) (0.00400) (0.00401) (0.00401) (0.00501) (0.00501) (0.00502) (0.00502) 

NY Heart Assoc. 

Class IV 0.155*** 0.154*** 0.154*** 0.154*** 0.189*** 0.188*** 0.188*** 0.188*** 

 
(0.00508) (0.00508) (0.00508) (0.00509) (0.00636) (0.00636) (0.00636) (0.00637) 

NY Heart Assoc. 

Class missing 0.0497*** 0.0484*** 0.0486*** 0.0499*** 0.0783*** 0.0763*** 0.0768*** 0.0789*** 

 
(0.0121) (0.0121) (0.0121) (0.0122) (0.0152) (0.0152) (0.0152) (0.0152) 

Age 70-74 0.0154*** 0.0154*** 0.0156*** 0.0155*** 0.0279*** 0.0280*** 0.0279*** 0.0278*** 

 
(0.00188) (0.00188) (0.00189) (0.00189) (0.00236) (0.00236) (0.00236) (0.00236) 

Age 75-79 0.0363*** 0.0364*** 0.0365*** 0.0364*** 0.0647*** 0.0649*** 0.0649*** 0.0647*** 

 
(0.00190) (0.00190) (0.00190) (0.00190) (0.00238) (0.00238) (0.00238) (0.00238) 

Age 80-84 0.0624*** 0.0625*** 0.0626*** 0.0625*** 0.109*** 0.110*** 0.110*** 0.109*** 

 
(0.00208) (0.00208) (0.00208) (0.00208) (0.00260) (0.00260) (0.00260) (0.00260) 

Age 85-89 0.0988*** 0.0989*** 0.0987*** 0.0986*** 0.171*** 0.172*** 0.171*** 0.171*** 
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(0.00297) (0.00297) (0.00297) (0.00297) (0.00371) (0.00371) (0.00372) (0.00372) 

Age 90+ 0.179*** 0.179*** 0.179*** 0.179*** 0.271*** 0.272*** 0.272*** 0.272*** 

 
(0.00801) (0.00801) (0.00801) (0.00802) (0.0100) (0.0100) (0.0100) (0.0100) 

Previous cardiac 

arrest 0.0551*** 0.0546*** 0.0546*** 0.0551*** 0.0544*** 0.0537*** 0.0537*** 0.0544*** 

 
(0.00470) (0.00470) (0.00470) (0.00470) (0.00588) (0.00588) (0.00588) (0.00589) 

Family history 

sudden arrest -0.0121*** -0.0121*** -0.0121*** -0.0121*** -0.0182*** -0.0183*** -0.0183*** -0.0183*** 

 
(0.00390) (0.00389) (0.00390) (0.00390) (0.00488) (0.00488) (0.00488) (0.00488) 

Ventricular 

tachycardia 0.0444*** 0.0444*** 0.0443*** 0.0443*** 0.0566*** 0.0566*** 0.0564*** 0.0564*** 

 
(0.00166) (0.00166) (0.00166) (0.00166) (0.00208) (0.00207) (0.00208) (0.00208) 

Non-ischemic 

dilated 

cardiomyopathy -0.0199*** -0.0195*** -0.0195*** -0.0198*** -0.0298*** -0.0293*** -0.0291*** -0.0296*** 

 
(0.00239) (0.00238) (0.00239) (0.00239) (0.00299) (0.00298) (0.00299) (0.00299) 

Ischemic heart 

disease 0.0191*** 0.0195*** 0.0195*** 0.0191*** 0.0276*** 0.0281*** 0.0282*** 0.0276*** 

 
(0.00254) (0.00254) (0.00255) (0.00255) (0.00318) (0.00318) (0.00319) (0.00319) 

Previous MI 0.00900*** 0.00907*** 0.00908*** 0.00901*** 0.0137*** 0.0138*** 0.0138*** 0.0137*** 

 
(0.00170) (0.00170) (0.00171) (0.00171) (0.00213) (0.00213) (0.00214) (0.00214) 

Previous CABG 0.00810*** 0.00813*** 0.00799*** 0.00797*** 0.0196*** 0.0196*** 0.0196*** 0.0195*** 

 
(0.00161) (0.00161) (0.00161) (0.00161) (0.00202) (0.00202) (0.00202) (0.00202) 

Previous PCI -0.0106*** -0.0106*** -0.0107*** -0.0107*** -0.0124*** -0.0124*** -0.0125*** -0.0125*** 

 
(0.00158) (0.00158) (0.00158) (0.00158) (0.00198) (0.00198) (0.00198) (0.00198) 

Electrophysiology 

study -0.0181*** -0.0172*** -0.0175*** -0.0184*** -0.0259*** -0.0246*** -0.0248*** -0.0261*** 

 
(0.00287) (0.00287) (0.00287) (0.00287) (0.00360) (0.00359) (0.00360) (0.00360) 

VT indication (ES 

study) -0.00426 -0.00392 -0.00392 -0.00427 -0.00352 -0.00295 -0.00299 -0.00356 

 
(0.00539) (0.00538) (0.00539) (0.00539) (0.00674) (0.00674) (0.00674) (0.00675) 

Female -0.00443** -0.00438** -0.00456** -0.00459** -0.0129*** -0.0129*** -0.0131*** -0.0132*** 

 
(0.00197) (0.00197) (0.00197) (0.00197) (0.00247) (0.00247) (0.00247) (0.00247) 

Black 0.0196*** 0.0200*** 0.0197*** 0.0193*** 0.0340*** 0.0347*** 0.0343*** 0.0337*** 

 
(0.00282) (0.00281) (0.00281) (0.00282) (0.00354) (0.00353) (0.00353) (0.00354) 

Hispanic  0.00123 0.000668 0.000814 0.00140 0.00216 0.00132 0.00121 0.00209 

 
(0.00333) (0.00333) (0.00333) (0.00334) (0.00418) (0.00418) (0.00418) (0.00419) 

Other race 0.00772* 0.00724* 0.00719* 0.00770* 0.0125** 0.0118** 0.0114** 0.0121** 

 
(0.00433) (0.00433) (0.00433) (0.00433) (0.00542) (0.00542) (0.00542) (0.00543) 

County Smoking 

Rate -0.000106 -9.76e-05 -0.000118 -0.000123 0.000245 0.000253 0.000204 0.000201 

 
(0.000238) (0.000237) (0.000236) (0.000237) (0.000301) (0.000298) (0.000297) (0.000300) 

County Obesity 

Rate 
-

0.00121*** -0.00120*** -0.00116*** 

-

0.00117*** 

-

0.00118*** 

-

0.00117*** 

-

0.00113*** 

-

0.00114*** 

 
(0.000246) (0.000245) (0.000244) (0.000245) (0.000311) (0.000309) (0.000308) (0.000310) 
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County Diabetes 

Rate 0.00353*** 0.00344*** 0.00327*** 0.00336*** 0.00435*** 0.00424*** 0.00399*** 0.00411*** 

 
(0.000575) (0.000572) (0.000570) (0.000573) (0.000730) (0.000723) (0.000720) (0.000728) 

County Binge 

Drinking Rate 1.72e-05 -4.64e-05 0.000145 0.000210 1.60e-05 -7.21e-05 0.000196 0.000286 

 
(0.000281) (0.000278) (0.000277) (0.000281) (0.000360) (0.000354) (0.000353) (0.000359) 

ZIP Code median 

income -2.21e-08 -1.70e-08 -2.87e-08 -3.34e-08 -1.12e-07 -1.04e-07 -1.25e-07 -1.33e-07 

 
(6.68e-08) (6.67e-08) (6.66e-08) (6.68e-08) (8.40e-08) (8.37e-08) (8.36e-08) (8.39e-08) 

ZIP code poverty 

rate 0.0626*** 0.0598*** 0.0607*** 0.0637*** 0.0732*** 0.0689*** 0.0702*** 0.0746*** 

 
(0.0139) (0.0139) (0.0139) (0.0139) (0.0174) (0.0174) (0.0174) (0.0174) 

2007.year 0.00368 0.00524** 0.00499* 0.00346 0.00432 0.00675** 0.00620* 0.00380 

 
(0.00266) (0.00267) (0.00267) (0.00267) (0.00330) (0.00330) (0.00331) (0.00330) 

2008.year 0.00856*** 0.0104*** 0.0101*** 0.00835*** 0.00748** 0.0103*** 0.00975*** 0.00695** 

 
(0.00278) (0.00279) (0.00279) (0.00278) (0.00345) (0.00345) (0.00346) (0.00345) 

2009.year 0.00713** 0.00919*** 0.00872*** 0.00670** 0.00848** 0.0117*** 0.0109*** 0.00775** 

 
(0.00284) (0.00285) (0.00285) (0.00284) (0.00352) (0.00353) (0.00353) (0.00353) 

2010.year 0.0103*** 0.0120*** 0.0115*** 0.00982*** 0.00381 0.00657* 0.00558 0.00289 

 
(0.00300) (0.00300) (0.00301) (0.00300) (0.00373) (0.00373) (0.00374) (0.00374) 

2011.year 0.00657** 0.00783** 0.00703** 0.00583* 0.00850** 0.0104** 0.00901** 0.00716* 

 
(0.00333) (0.00333) (0.00333) (0.00334) (0.00416) (0.00415) (0.00415) (0.00417) 

2012.year 0.00976*** 0.0103*** 0.00966*** 0.00916*** 0.00869** 0.00952** 0.00826* 0.00753* 

 
(0.00341) (0.00340) (0.00340) (0.00341) (0.00426) (0.00424) (0.00424) (0.00426) 

2013.year 0.0106*** 0.0112*** 0.0102*** 0.00974*** 0.0157*** 0.0166*** 0.0153*** 0.0145*** 

 
(0.00339) (0.00338) (0.00338) (0.00339) (0.00423) (0.00421) (0.00422) (0.00424) 

ln(SD of Hospital 

RE) -3.833*** -3.879*** -3.929*** -3.880*** -3.513*** -3.579*** -3.625*** -3.555*** 

 (0.0534) (0.0558) (0.0591) (0.0563) (0.0474) (0.0503) (0.0528) (0.0495) 

ln(SD of Hosp x 

Year RE) -4.418*** -4.419*** -4.416*** -4.416*** -4.400*** -4.418*** -4.413*** -4.395*** 

 (0.181) (0.181) (0.181) (0.180) (0.262) (0.271) (0.268) (0.260) 

ln(SD of Individual 

Error) -1.135*** -1.135*** -1.135*** -1.135*** -0.910*** -0.910*** -0.910*** -0.910*** 

 (0.00147) (0.00147) (0.00147) (0.00147) (0.00147) (0.00147) (0.00147) (0.00147) 

Constant 0.0901*** 0.118*** 0.175*** 0.147*** 0.152*** 0.195*** 0.277*** 0.234*** 

 
(0.0147) (0.0150) (0.0176) (0.0174) (0.0185) (0.0190) (0.0224) (0.0222) 

         
Observations 238,059 238,059 237,466 237,466 238,059 238,059 237,466 237,466 

Number of 

Hospitals 1,617 1,617 1,608 1,608 1,617 1,617 1,608 1,608 

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  For purpose of comparison, the log standard error of hospital, 

hospital x year, and individual random effects in the absence of the first three variables in the table is -3.821 (0.0526), -4.436 (0.187), 

and -1.135 (0.00147) for one-year mortality and -3.508 (0.0472), -4.416 (0.270), and -0.910 (0.00147) for two-year mortality. VT 

denotes ventricular tachycardia, MI myocardial infarction, CABG coronary artery bypass graft, PCI percutaneous coronary intervention,   

 



59 
 

Table B.2(b):  Least-Squares Regression Estimates (Partial Set of Regression Coefficients) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 
Death1yr. Death1yr Death1yr Death1yr Death2yr Death2yr Death2yr Death2yr 

                  

HRR-level ICD Rate 1.180*** 1.604*** 1.386*** 0.971*** 1.049** 1.746*** 1.427*** 0.740* 

 
(0.330) (0.335) (0.327) (0.322) (0.441) (0.447) (0.432) (0.426) 

Ln(volume) 

 

-

0.00761*** 

-

0.00760*** 
  

-

0.0125*** 

-

0.0126*** 
 

  
(0.00109) (0.00108) 

  
(0.00140) (0.00139) 

 

HRR-level Rx Rate 

  
-0.0880*** 

-

0.0885*** 
  

-0.121*** 

-

0.121*** 

   
(0.0143) (0.0149) 

  
(0.0193) (0.0203) 

         
Observations 238,059 238,059 237,466 237,466 238,059 238,059 237,466 237,466 

R-squared 0.035 0.035 0.036 0.035 0.046 0.047 0.047 0.047 

Notes: All risk adjusters (as in Table B.2(a)) included in the regression analysis but not reported. Standard errors clustered at hospital 

level in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1  

 

 

Table B.2(c):  Fixed-Effects Regression Estimates (Partial Set of Regression Coefficients) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 
death1yr death1yr death1yr death1yr death2yr death2yr death2yr death2yr 

                  

HRR-level ICD Rate 0.551 0.757 0.749 0.540 0.238 0.609 0.590 0.209 

 
(0.536) (0.545) (0.547) (0.538) (0.683) (0.689) (0.694) (0.688) 

Ln(volume) 

 

-

0.00512** 

-

0.00523** 
  

-

0.00925*** 

-

0.00951*** 
 

  
(0.00228) (0.00230) 

  
(0.00286) (0.00289) 

 
HRR-level Rx Rate 

  
-0.0795 -0.0814 

  
-0.120 -0.123 

   
(0.0810) (0.0808) 

  
(0.104) (0.103) 

         
Observations 238,059 238,059 237,466 237,466 238,059 238,059 237,466 237,466 

R-squared 0.046 0.046 0.046 0.046 0.058 0.058 0.058 0.058 

Notes: All risk adjusters (as in Table B.2(a)) included in the regression analysis but not reported. All models also include hospital fixed 

effects. Standard errors clustered at the hospital level in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1   
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C: Hospital Level Measures of ICD Use and Mortality  

 Figure C.1 and C.2 plot the histograms of 𝑎𝑖 and 𝑂𝑖 identified from the data, as described in section 4.1.  

 

Figure C.1: Histogram of Hospital-Level True Skill Estimates ( ia )  

 

Figure C.2 Histogram of Hospital-Level Generalized Overconfidence Estimates ( iO ). 

 

 




